
Mastinu, E., Ortiz-Catalan, R., and Håkansson, B., Analog Front-Ends comparison: on the way to a portable, low-power and low-cost EMG controller based on Pattern 

Recognition, in Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Milan, Aug 25-29, 2015. 
 

 

  

Abstract— Compact and low-noise Analog Front-Ends (AFEs) 

are becoming increasingly important for the acquisition of 

bioelectric signals in portable system. In this work, we compare 

two popular AFEs available on the market, namely the 

ADS1299 (Texas Instruments) and the RHA2216 (Intan 

Technologies). This work develops towards the identification of 

suitable acquisition modules to design an affordable, reliable 

and portable device for electromyography (EMG) acquisition 

and prosthetic control. Device features such as Common Mode 

Rejection (CMR), Input Referred Noise (IRN) and Signal to 

Noise Ratio (SNR) were evaluated, as well as the resulting 

accuracy in myoelectric pattern recognition (MPR) for the 

decoding of motion intention. Results reported better noise 

performances and higher MPR accuracy for the ADS1299 and 

similar SNR values for both devices. 

I. INTRODUCTION 

Although modern knowledge in matter of mechanical and 
robotic engineering is a consolidated reality, the available 
options for the control of prosthetic devices limits the 
utilization of advanced robotics. So far, the control of 
artificial limbs has been mostly made possible by the use of 
analog circuits. These are based on the amplification of EMG 
signals and the switching of motor actuators depending on 
overcoming voltage thresholds [1], [2]. The use of RMS-to-
DC converters in this direct control strategy has been a good 
option for many examples in the state of art.  In the literature 
it is also common to find examples of hybrid control circuits 
[3], where the analog part concerns about amplification, 
filtering and acquisition of EMG, while the digital part 
focuses mainly on checking the signal levels and driving 
motor units. Recently, a new approach has emerged, 
representing the main interest of this and future work. It has 
its foundations on digital controllers programmed with their 
own decision intelligence able to predict the motion intent of 
the amputee. Particular training protocols can be developed 
to achieve the intuitive control of the prosthesis based on the 
principle that specific EMG patterns recorded from residual 
limb muscles are associated with specific hand movements 
and grip functions, also known as MPR. The control 
complexity and efficiency can be truly increased by 
developing a proper custom artificial intelligence based on 
MPR. The ever-increasing computing power of modern 
microcontroller units (MCU) allows digital solutions to 
handle conventional and complex signal processing and MPR 
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algorithms. However, before algorithms can take over, signal 
acquisition hardware must provide the source signals, which 
is the focus of this work. 

A. ADS1299 vs RHA2216 

Despite the two ICs used in this study have the aim to record 
low amplitude bioelectric signals, they still have relative big 
differences. The TI’s ADS1299 has 8 differential acquisition 
channels and each channel is equipped with a programmable 
gain amplifier, up to 24 times, and with an analog to digital 
delta-sigma converter of 24 bits resolution [4]. Intan 
Technologies provides devices with 16, 32 and 64 channels 
with a fix gain of 200. In this work we have focused on 
RHA2216 with 16 differential channels [5], [6]. It has built-
in high-pass and low-pass filters configurable by external 
resistors, and as opposed to the TI’s device the RHA2216 
must be interfaced to an external data converter to obtain the 
signals in digital format. Intan also provides AFEs with 
digital output. The RHA2216 is equipped with an internal 
multiplexer that, driven externally, allows all 16 amplifiers to 
share one analog-to-digital converter with sampling rate up 
to 30kHz. In the ADS1299 the oversampling technique is 
used to reduce the noise, spreading it on a wider band of 
1.024 MHz. The only filtering achievable is a digital low-
pass decimation filter with the cut-off frequency that depends 
on the output data rate: lower data rate means narrower 
bandwidth and turns in higher SNR, higher data rate means 
wider bandwidth and thus more noise is included in the 
signals. This decimation filter introduces a pass-band trend 
that repeats itself on the multiplies of the oversampler 
frequency. For this reason the use of an anti-aliasing filter is 
recommended to eliminate all possible high frequency 
interferences. A DC block filter is recommended as well to 
avoid any bio-potential drift from the recorded signals. The 
ADS1299 is totally customizable via software modifying its 
internal registers and it introduces some useful features for 
EMG, EEG and ECG applications, such as the possibility to 
check the state of connections of the electrodes; the 
possibility to measure the bias voltage of the subject; and the 
option to drive this bias to increase CMR in a configuration 
close to the classic RLD circuit. 

II. METHODS 

The RHA2216 must be interfaced with an external analog-to-
digital converter. The AD8221 (Analog Devices) with 16 bits 
of resolution was used for this task as recommended by the 
manufacturer. In all experiments and for both devices the 
sample rate was set on 2000 Hz. The data acquisitions were 
obtained interfacing both chips to a TI MCU with ARM 
CortexM4 core. The MCU was programed to acquire the 
EMG and transfer it to a PC via UART-to-USB interface. 
The data transfer protocol was SPI for both devices. With the 
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same SPI lines it was possible to setup the ADS1299 
configuration registers. A Matlab GUI was used for receiving 
and saving data on the PC side. The AFEs test began with the 
measure of two of the major important features for 
bioelectric signals acquisition, CMR and IRN. The ADS1299 
offers an internal amplifier which can be used for drive the 
bias signal in way to increase the CMR, and this mode was 
also evaluated. Moreover, the bias driver circuit was tested 
also in an open loop configuration. Then we tested the 
performances of both devices when used for MPR. All the 
accuracies calculations were done offline using BioPatRec 
[7], an open source platform for MPR implementation based 
on Matlab. Finally the same data set was used for SNR 
analysis. 

A. IRN and CMR 

For the initial section of experiments, 10 seconds recording 
time was used. The IRN was tested shorting together all input 
terminals and tying them to ground. Every channel revealed 
an input offset which was deleted by subtracting the mean of 
that channel. Resulting data were plotted on histogram 
graphs and the values of the IRN, in peak to peak 
representation, were computed from the standard deviation. 
The CMR tests were done by shorting together the positive 
and negative input terminals of every channel and then tying 
all channels together to a relative big common mode voltage. 
This common mode signal was set to be a sinusoid with 50 
Hz frequency, centered in the middle supply of the devices 
with amplitude able to reach the supply limits. The supply 
configurations were dual 2.5V for ADS1299 and single 3.3V 
for RHA2216. Finally, the CMRR was computed as the ratio 
of differential gain power over the common-mode gain 
power, measured in decibel. The differential gain was set as 
the maximum for both devices, or rather 24 times for 
ADS1299 and 200 times for the RHA2216. As afore 
mentioned, the ADS1299 offers the possibility to improve 
CMR driving the bias of the user. This is based on a flexible 
internal multiplexer with which it is possible to lead the 
common mode voltage of every input channel to the 
inverting input of a built-in amplifier. The inverting input is 
then forced to the reference voltage by the non-inverting 

terminal and a feedback loop net composed by �� and ��. 
The bias driver test setting was different, and as suggested in 
[8], it was based on a circuit used to model the body's 
response to power lines stimulus. This circuit, shown in Fig. 
1, is basically a resistor and capacitor net with equivalent 
impedance that emulates the mismatch introduced in the 
differential channel by the electrode/body system. This set 
allows to test one channel for each time: the channel is used 
for sense the bias oscillations inducted by a signal generator 
in the parallel net that simulates body’s impedance. Then, an 
inverted version of these bias drifts is sent back to the 
electrode/body system through another analogue parallel net, 
with the aim of delete the common mode voltage 

fluctuations. The ��  and �� values were chosen in order to 
get a cut off frequency two time bigger than the stimulus 
frequency [9]. The test was repeated for every input channel. 
Finally, with the same test setting this bias driver loop was 
tested with an open loop configuration. In this mode, the 

common mode driver signal is delivered to the body’s model 
through a resistance connected to the output of the amplifier, 
instead of using the RC net to close the feedback loop. 
 

 

 

 

 

 

 

 

 

 

 

B. MPR and SNR  

MPR tests were done on a set of eight able-bodied subjects, 
six males and two females, with age ranging from 23 to 32 
years old. Four of them were already familiar with the 
BioPatRec system and the rest were novices. Four pairs of 
Ag-AgCl electrodes were equidistantly placed around the 
forearm of the subjects, forming four differential channels. 
The inter-electrode spacing was approximately 2 cm, set 
along the muscle fibers. A reference electrode was placed in 
the elbow. The subjects were seated and asked to find their 
most comfortable position, then, placed in front of a screen 
where the BioPatRec recording sessions were run. The 
recording sessions consisted in a sequence of ten movements, 
which the subjects were asked to execute doing three 
repetitions for each, alternately three seconds contraction 
time with a three seconds rest time. The movements were: 
open hand, close hand, flex hand, extend hand, pronation, 
supination, side grip, fine grip, agree and pointer. Three 
sessions were recorded from every subject, using three 
different acquisition sets: Intan’s RHA2216, TI’s ADS1299 
and TI’s ADS1299 with bias driver circuit enabled. The 
order was randomized for every subject. The subjects were 
trained, before start the experiment, with one dummy 
recording session. The classifier used to decode the 
performed movement was Linear Discriminant Analysis 
(LDA) using four time domain features: absolute mean, 
waveform length, zero crossing and slope changes [7]. The 
total number of time windows per movement was 121 with 
200 ms length and 50 ms time increment. These time 
windows were then assigned randomly to training, validation 
and test sets by 40%, 20% and 40% of the total feature 
vectors, respectively. The randomize sets were used to train 
the classifier in One-Vs-One topology. This operation was 
repeated 10 times and the average accuracy between all 
movements for all iterations was taken as the result. 

The last part of this experiment regards the SNR. A statistic 
ratio of signal and noise powers was calculated using the 
previous recording sessions. From every of the three 

 
Figure 1. ADS1299 bias driver test setup, close and open-loop configuration. 
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repetitions in the same movement recording, the central three 
seconds were extracted, from contraction and from resting 
time slots. These portions were then concatenated in two 
different arrays and considered as signal and noise data, 
respectively. RMS values were calculated and used in (1) to 
get the SNR. 

����� = 10 ∗ ����
�����

����� =  20 ∗ ����
��

� ∑ �� ���

��
� ∑ �����

      (1) 

For every movement, the channel with strongest muscle 
activation was taken in consideration. This procedure was 
repeated for all subjects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. RESULTS 

 

 

 

 

The results are summarized in Table 1. Average CMRR was: 
116 dB for the ADS1299, 135 dB for the ADS1299bias, and 
84 dB for the RHA2216. The values are mostly equal to the 
values reported in the respective datasheets. Moreover, it was 
found, as expected, a performance improvement using the 
bias driver functionality. On the other hand, the 
ADS1299bias with open-loop configuration resulted in a 
CMRR of 97 dB with a resistance of 1.3 MΩ. 

The average IRN expressed in peak to peak volts was: 2.58 
µV and 9.58 µV for the ADS1299 and RHA2216, 
respectively. These results can be seen in histogram form in 
Fig.4. In both cases were found no surprising values, perhaps 
a slight and favorable variation from the datasheet value for 
the Intan device. 

The accuracies found with BioPatRec LDA classifier are 
reported in Fig. 2. For all configurations tested, the average 
accuracies found were over 90%. The 0.05 statistic 
significance of the results was tested with Wilcoxon signed-
rank test. 

  

 
Figure 2. Results for accuracies per movements. 

 

 
Figure 3. Results for SNR per movements. 
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The SNR results are shown in Fig. 3 and it ispossible to note 
close values for all three configurations. It was surprisingly 
found a lower SNR for the ADS1299 with bias driver system 
although it was expected to be the highest before start the 
experiment. 

IV. CONCLUSION 

According to the CMRR and IRN results reported in Table I, 
it is possible to argue that the ADS1299 can achieve better 
performances against noise. The CMRR performance 
increased with the bias driver feature, but not in the open-
loop configuration. The CMRR was obtained using a model 
circuit, but the natural body response to surrounding 
interferences is more complex, and therefore it could 
potentially lead the system to worse performance. It is 
interesting to note how the bias driver circuit increased the 
MPR accuracy although presenting a lower SNR. One can 
speculate that perhaps the feedback loop forces changes in 
the signal waveforms from which the result is higher 
descriptive features while worsening the average SNR. 
Further work is necessary to investigate this particular 
contradiction. 
 

 

 

 

 

 

 

 

 

TABLE I. DEVICES COMPARISON 

Features 

Devices 

ADS1299 
ADS1299 

bias driver 
RHA2216 

n. Differential Channels 8 16 

Power x Ch. [mW] 5 0.5 

Supply Voltages [V] 5 and 3.3 3.3 

Gain [V/V] 1,2,4,6,8,12,24 200 

Signal BW Range [Hz] 0 ÷ 4093 0.02 ÷20k 

IRN [µVpp] 
Measured 2.58 9.58 

Datasheet 2.79 13.2 

CMRR [dB] 
Measured -116 -135 -84 

Datasheet -120  -82 

SNR [dB]  23.02 20.94 21.45  

BioPatRec Accuracy [%]  96.22 96.88 94.62  

 

Although the RHA2216 was found to be more sensitive to 
noise, it still has favorable points like the 16 acquisition 
channels, the built-in filters with a wide selectable range of 
band-pass frequencies, low power consumption, and the low 
operating voltage of 3.3 V. Additionally, ADC with higher 
resolution and performance could be used with this IC. 
Comparing these two ICs it should appear clearly how they 
are inherently different, even though aimed for the same 
purpose. Intan provides an IC able to reach acceptable results 
in EMG context, relatively easy to use, and ready to work at 
maximum performance. On the TI side, the ADS1299 needs 
more effort to get it working at the best level, an effort that is 
heavier on the software side. For instance, the absence of an 
inner input filter for DC rejection, forces designers to look 
into filter solutions, analog or digital as well. Despite this, 
ADS1299 digital side gives more flexibility and options like 
bias driving or lead-off detection, provided that the time to 
market of the application in question is sufficient to take 
advantage of it. In sum, it is worth to point out the different 
design philosophies behind of these two ICs. RHA2216 is a 
low-power, low-noise and 16 differential channels device 
purely analog. The ADS1299 has comparable performance, it 
delivers a digital output, and it is less expensive. These two 
devices are valuable solutions for integration into artificial 
limbs controllers based in MCU and MPR, and the final 
selection would dependent on budget, available space on 
PCB, number of channels, and noise rejection capabilities. 
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Figure 4. IRN histograms. 


