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ABSTRACT
Biologically inspired algorithms were used in this work
to approach different components of pattern recognition
applied to the control of robotic prosthetics. In order to
contribute with a different training paradigm, Evolutionary
(EA) and Particle Swarm Optimization (PSO) algorithms
were used to train an Artificial Neural Network (ANN).
Since the optimal input set of signal features is yet un-
known, a Genetic Algorithm (GA) was used to approach
this problem. The training length and rate of convergence
were considered in the search of an optimal set of signal
features, as well as for the optimal time window length.

The ANN proved to be an accurate pattern recogni-
tion algorithm predicting 10 movements with over 95%
accuracy. Moreover, new combinations of signal features
with higher convergence rates than the commonly found
in the literature were discovered by the GA. It was also
found that the PSO had better performance that the EA as
a training algorithm but worse than the well established
Back-propagation. The latter considered accuracy, train-
ing length and convergence. Finally, the common practice
of using 200 ms time window was found to be sufficient
for producing acceptable accuracies while remaining short
enough for a real-time control.
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1 Introduction

The lack of classification algorithms [1] and control sys-
tems [2] were once the principal issues for complex pros-
thetic control. Nowadays several researchers have shown
the possibility to identify finger and hand positioning using
a variety of pattern recognition (PatRec) algorithms such
as:

• Artificial neural networks (ANNs) [2–6].

• Support vector machines (SVM) [7, 8].

• Gaussian mixture models (GMMs) [9].

• Discrete wavelet transform (Wavelets) [10].

• Hidden Markov models (HMM) [11].

• Fuzzy logic [12].

• Linear discriminant analysis (LDA) [13].

Manipulation of different devices like robotic arms
using Myoelectric Signals (MES) as information sources
and SVM as control algorithm has been proved to be a fea-
sible technology [7]. In patients where myoelectric con-
trol is not possible, EEG in combination with ANNs have
been used instead [4]. These studies have demonstrated the
identification of several degrees of freedom (DoF) which
would be a significant improvement over the current my-
oelectric prostheses that rarely control 2 DoF simultane-
ously. However, they have all been short-term implementa-
tions and despite the extensive work done in this field, there
is still not a generalized agreement in the optimal way to
conduct PatRec, nor the optimal way to record MES that
allows for a long-term implementation. Therefore, there
is a need to continue research in this area to overcome the
issues of a long-term stable and robust implementation of
PatRec based prosthetic control.

Currently most PatRec algorithms have reached accu-
racies around 95% and although these studies are difficult
to compare because they use different evaluation method-
ologies, some authors have used just a few of these algo-
rithms in the same system [8, 14, 15]. Hargrove et al sug-
gested that most of the modern algorithms (ANNs-MLP,
ANNs-LP, LDA, GMM, HMM) have reached a steady
state, where all have similar performance [14]. Therefore
we considered important to also explore the signal features
used as input of the PatRec besides implementing alterna-
tive training paradigms.

Different PatRec algorithms have used different sig-
nal features from the time and frequency domains. Fea-
tures such as autoregression coefficients [15,16], mean and
median frequency [17], variance and moments [18], etc.
The most common features found in the literature, although
in different combinations, are mean absolute value, zero
crossing, slope sign change, wavelength and root mean
square (RMS) [3, 8, 13, 15, 16, 18–22].

Because there is no consensus on which signal fea-
tures provides a better pattern generalization, 21 features
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were explored during this study (Table 1). Some of these
characteristics were taken from previous publications and
others were selected as typical statistical descriptors.

Time Frequency
1 Mean (tmn) 17 Wavelength (fwl)
2 Mean absolute (tmabs) 18 Wavelength ranking (fwlr)
3 Median (tmd) 19 Mean frequency (fmn)
4 Mode (tmod) 20 Median frequency (fmd)
5 Standard dev. (tstd ) 21 Mean frequency of (fpm)
6 Variance (tvar) peaks ≥ max(peak)

2
7 Wavelength (twl)
8 Root mean square (trms)
9 Zero crossing (tzc)

10 Peaks ≥ RMS (tpks)
11 Peaks mean (tmpks)
12 Peaks mean vel. (tmvel)
13 Slope changes (tslpch)
14 Covariance (cr)
15 Correlation (vr)
16 Power (tPwr)

Table 1. EMG signal features from time and frequency do-
mains used by the Genetic Algorithm in order to find an
optimal set for pattern recognition.

Important factors when using PatRec algorithms that
are not normally discussed in the literature are the training
length and rate of convergence. The former relates to the
training time and the latter to how the training algorithm
will perform with different subjects. Unlike the rate of con-
vergence, the training length depends heavily on the cho-
sen programming language and hardware where the PatRec
training algorithm is executed. It is therefore more critical
algorithm-wise to have a higher convergence rate since this
will assure that the PatRec training algorithm can be used
in more subjects while consuming the same training time.
Both the training length and the rate of convergence are
monitored during all the experiments in this study.

1.1 Algorithms

ANNs have been widely used in problems characterized by
the lack of physical or statistical understanding, statistical
variations in the observable data and non-linear mechanism
responsible for the generation of the data [23]. Myoelectric
signals have been described as a non-stationary stochastic
process with approximately zero mean and varying vari-
ance [8, 18], or simply as stochastic signals [17, 24] that
inherently posses the same characteristics. ANNs are thus
chosen in this work as the PatRec algorithm for the iden-
tification of isometric movements using EMG. The main
drawback of ANNs is that there are no clearly defined rules
for designing an optimal network. For instance, the num-
ber of neurons in the hidden layer as well as the number of
hidden layers play an important role in the network perfor-
mance. Too few neurons will be equivalent to a brain dead
system where the network will not be able to learn the re-
quired task. On the other hand, too many neurons are easily
over trained, resulting in memorization rather than learning
and subsequent loss of generalization. However, from these

scenarios it is always better to have more neurons followed
by optimization. The optimal number of neurons, training
length, and training data quality are the keys for a good
generalization method.

Unlike previous studies, the ANNs were trained
via two stochastic algorithms, an Evolutionary Algorithm
(EA) and Particle Swarm Optimization (PSO), plus Back-
propagation (BP) for benchmarking. This decision was
made in order to investigate a novel approach to the training
problem with proper benchmarking against a well estab-
lished technique. PSO and EA are artificial intelligence al-
ternatives to purely mathematical optimization algorithms.
Its stochastic nature could avoid local optimum that deter-
ministic mathematical algorithms would have normally dif-
ficulties to overcome.

2 Methods

2.1 Data Acquisition

The recordings were obtained using 8 stainless steel elec-
trodes in a bipolar configuration (4 bipolar electrode pairs),
1 cm diameter and 2 cm inter-electrode distance. Several
investigations suggests at least 4 bipolar electrodes are nec-
essary to reach an acceptable degree of signal classifica-
tion [14, 16, 25]. The position of the electrodes differed
from subject to subject and no special consideration on
their location was made aside from maintaining approxi-
mately the same distance between bipolar pairs in order
to cover the entire circumference of the forearm, approx-
imately 5 cm distal to the elbow, one proximal and one
distal. This arrangement resulted in 2 bipolar electrodes
placed in the flexor side and the other 2 in the extensor
side. The lack of selective electrodes placement helps to
ensure that the development of the algorithms occurs with
extremely low dependency on electrode location, a critical
factor to facilitate the fitting of prostheses in the clinic.

The in-house designed Bio-amps had over 120 dB of
Common Mode Rejection Ratio, a gain of 82 000 and a 1st
order Butterworth band-pass filter with cut-off frequencies
at 70 and 3 000 Hz. The signal was filtered again digitally
with a Butterworth band-stop filter for the power line and
harmonic interference (PLH). The signals were sampled at
8 kHz.

Patient safety is commonly assured with an isolation
stage that prevents counter-current from flowing and dis-
charging on the patient. An isolation amplifier was used in
this experiment together with a 1 MΩ resistor in series with
the leads to limit the current that could flow to the patient.
Special attention must be paid when selecting this resistor
as it, in conjunction with the input capacitance of the In-
amp, acts as a low-pass filter that can significantly reduce
the bandwidth of the system.

8



2.2 EMG acquisition, processing and patterns

A recording session consisted of Ne different exercises or
patterns that were repeated Nr times. These exercises were
isometric contractions held for Tc seconds followed by Tr
seconds of relaxation time. A percentage of the contraction
time (Pct) was established in order to eliminate transient
periods.

All channels were recorded at a given sampling fre-
quency (Fs) and digitally combined into 3 matrices con-
taining independent samples to generate training, valida-
tion and testing sets. The testing set was used exclusively
to measure the accuracy of the network once the training
is finished and was therefore not included in the learning
process. This differs from standard ANN accuracy report-
ing but it was considered a more realistic evaluation since
this set is independent of the training. In this way, all accu-
racies reported in this study correspond exclusively to the
independent testing set.

Accuracy herein is defined as the percentage of cor-
rectly registered individual neuron outputs over the total
number of outputs. The total number of outputs is given by
the number of patterns times the size of testing set. This
means that for a given movement not only is the correct
number of neuron firings checked, but it is also accounted
for whether the others do or do not fire.

Ten different finger and hand positions of clinical rel-
evance were recorded and are shown in Figure 1 These
were hand open, hand close, hand flexion, hand exten-
sion, forearm pronation, forearm supination, side grip, pre-
cision grip, thumb up and index pointing. This was the
order followed for the subjects to execute each movement
per recording session. Most of these movements are con-
sidered as featured grip patterns in all known commer-
cial articulated robotic hands, although patients cannot nat-
urally execute them. The currently available, “i-LIMB”
(Touch Bionics Inc., UK), and the “VincentHand” (Vin-
cent Systems GmbH, Germany) are capable of performing
6 of these patterns. The “Michelangelo” (Otto Bock, Ger-
many) considers all the movements but lacks actuators for
flexion/extension and pronation/supination. Finally, “Be-
bionic” (RSLSteeper, UK) will provide actuators for all
mentioned movements as part of their grip repertoire.

2.3 PSO and EA for ANNs Training

Multi layer perceptron (MLP) [8], Kohonen self-organized
map (SOM) [26] and adaptive logic networks (ALN) [27]
have reported satisfactory results in similar research. The
former and the simplest ANNs architecture, Single layer
perceptron (SLP), were chosen as the initial ANN topolo-
gies for these experiments. The networks were trained us-
ing the mean square error as a fitness measure and all the
training algorithms share the same ANN evaluation rou-
tines.

The training length is an important fact to consider
since shorter times favor practical implementations. Al-

Figure 1. The pattern recognition was performed using sur-
face EMG recording of 10 isotonic contractions. These
were: hand open (a), hand close (b), hand flexion (c), hand
extension (d), forearm pronation (e), forearm supination
(f), side grip (g), precision grip (h), thumb up (i) and index
pointing (j). These movements were considered of clinical
relevance and constitute a major part of the grips repertoire
of most commercial articulated robotic hands.

though the algorithms have different methods for searching
optima, an objective method to compare the training length
is to measure the number of ANN evaluations since all the
training algorithms share the same evaluation routine. The
number of evaluations is directly related to the number of
trainings and is different between each algorithm. If the
training algorithm can not converge in a predefined num-
ber of trainings, it is marked as a failure.

In order to prevent the training algorithms from get-
ting stuck in a non-optimal local minimum, the training was
restarted if the validation set had a constant fitness for a
given number of trainings after a reset threshold. The infor-
mation to form the training, validation and testing sets was
randomly assigned before each training session or simula-
tion in order to account for stochasticity of the training and
to increase the number of trials from a necessarily finite set
of measurement data. For example, a set that was used for
validation during a given training was used for training or
testing in a subsequent trial. Finally the results of all the
simulations were averaged. A simulation thus consisted of
several trainings iterations until learning is achieved or fail-
ure occurs.

PSO and EAs are well-established optimization al-
gorithms. The capability of an ANN to produce desired
outputs depend on the weight assigned to its connections
and the connections themselves. Since the ANN structures
were chosen as SLP and MLP, the optimization problem re-
sides exclusively in finding the best weights. Each weight
is considered as a variable to be optimized by the PSO
and EA. After experimental trials of different parameters,
the best performance was obtained by using the configu-
rations shown in Tables 2 and 3 respectively. A detailed
description for the implementation of these algorithms can
be found in [28].

2.4 Time Window

The recording time window (TW) required for pattern
recognition is another parameter not standardized in the lit-
erature. Intuitively, a long recording window will reduce
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noise and improve recognition, but it will also slow down
real-time control. Surface recordings from 9 different sub-
jects (5 male, 4 female) with average age of 25.4 (min: 22,
max: 29, std: 2.3) were used to investigate the effect of re-
ducing the time window. At the same time, the PSO and
back-propagation algorithm were compared. The heuristic
used to stop the training was to achieve a 100% accuracy of
the validation set or a fitness value smaller than 0.1 in the
training set when no progress was observed in the fitness of
the validation set. The simulation was repeated 100 times
for each time window selecting subjects randomly for each
simulation. The sets were randomized before each simula-
tion. The set up is presented in Table 4.

The ANN used was a SLP with 3 times more neu-
rons in the hidden layer than the number of inputs. Six-
teen inputs correspond to 4 channels using 4 of the most
popular signal features: mean absolute value, wavelength,
zero crossing and RMS. It was experimentally discovered
that eliminating normalization improved PSO convergence.
Movements were recorded from 10 repetitions of 2 seconds
each using a Pct of 50%. Since the number of sets depends
on the time window, the training and validation set were
fixed at 6 and 2 respectively. The remaining sets were used
for testing, i.e. for TW equal to 1 s, the number of testing
sets was 2 and for a TW of 0.02 s there were 492 testing
sets.

3 Optimization of Signal Features Using an
Genetic Algorithm

Since some signal features produce similar characterization
and are probably redundant, an EA was used to find the
optimal combination. Optimal herein is defined as the fea-
tures that allow the fastest training with the most accurate
prediction and lowest rate of failures. A large amount of
features will increase the search space for the training al-
gorithms and thereby increase the number of iterations re-
quired to find a solution. The fastest training therefore en-
tails finding the smallest number of features that have the
highest characterization. The characterization is directly
related to the accuracy. The number of possible combina-
tions of 21 characteristics considering groups from 1 to 21
is around 2 million which is the search space for this prob-
lem.

Parameter Value
Particles: 20
Maximum velocity: 20 (±10)
δ t: 1
α: 1
Social component: 2
Cognitive component: 2
Craziness probability: 0.05
Inertial weight (w): 1.4
β for inertial weight: 0.9

Table 2. Summary of the PSO parameters used to train the
ANN.

A Genetic Algorithm was the type of EA used in
this problem because the coding of the genes as a binary
string was straight forward. The activation or deactivation
of a chromosome then represents the use of a given signal
feature. Since the algorithm used to train the ANNs was
stochastic, the EA ran 10 trainings to generate an average
of the fitness. The training fitness (ft) for each algorithm is
given by Eq. 1.

ft = E ∗ 1/Na ∗Nf (1)

where E is the number of evaluations, Na is the ac-
curacy of the ANN and Nf is the fitness of the ANN. As
can be deduced from the fitness formula, the EA optimizes
by minimizing the fitness. Roulette wheel selection with
80% crossover and 5% mutation rate provide the genetic
changes required for evolution. Elitism was used to pre-
serve two copies of the best individual in each generation.
A 50-individual population was evolved during 1 000 gen-
erations. BP was chosen to train the ANNs mostly for its
speed relative to PSO and EA. The training set up for this
analysis is summarized in Table 5.

4 Results

4.1 EA and PSO for ANNs Training

The EA was considerably slower than the PSO. Tradition-
ally, an EA has a larger population size than PSO and re-
sults in more evaluations per generation, and thus slow con-
vergence. The EA population consisted of 50 individuals
while PSO had 20 particles. An individual or particle re-
quires at least one evaluation of the fitness measure.

Initially, the EA showed poor convergence for more
than 2 patterns requiring a large number of generations.
Upon scrutiny of the population after no fitness improve-
ment, the execution was easily trapped in local minima
with poor diversity as a result. A better performance was
reached when the number of copies of the best individual
was reduced to one, and a variable mutation rate was intro-
duced. The heuristic for the mutation rate was to increase
it if a given percentage of the variances were smaller than
the means. The variance is a direct indicator of the spread
of the data set and therefore it was considered as a suitable
feature. However, due to its poor performance over 4 pat-
terns, even with the latter enhancements, the EA was not
investigated further as a PatRec training algorithm.

Parameter Value
Individuals: 50
Range ±100
Crossover 0.8
Mutation 1/genes
Tournament selection 0.75
Inbreeding % 0.1

Table 3. Summary of the EA parameters used to train the
ANN.
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Figure 2. These plots show the impact on accuracy, training length and convergence by reduction of the time window length.
The comparison between the particle swarm optimization and back-propagation algorithms is also presented in these plots,
where the latter proved to have smaller training lengths and a higher rate of convergence.

Parameter Value Parameter Value
Subjects: 9 ANN topology: SLP
Age: 25.4 ± 2.3 ANN hidden neurons: 48
Male % : 56 ANN hiden layers: 1
Ne: 4 BP η 0.6
Nr : 10 BP α 0.1
Tc: 2 PSO particles 1012
Tr : 2 PSO settings Tab. 3
Pct: 0.5
Normalization: No Training sets perNe: 6
Simulations: 100 Validation sets perNe: 2
Signal features: 4 Test sets perNe: Variable

Table 4. Summary of the settings used in the experiment to
investigate the effect of reducing the time window

Parameter Value Parameter Value
Time window (ms) 200 Training sets perNe: 18
Max trainings 1 000 Validation sets perNe: 9
Reset threshold 1 000 Test sets perNe: 18
Ne: 10 ANN topology: SLP
Nr : 3 ANN hidden neurons: 3 ∗ inputs
Tc: 6 ANN hidden layers: 1
Tr : 6 BP η 0.1
Pct: 0.5 BP α 0.1

Table 5. Summary of the settings used by the Genetic Al-
gorithm in order to optimize the signal features

The PSO showed better convergence than the EA. No
major difference in performance was observed with the use
of an elite particle or the craziness component. It was
discovered experimentally that fitness lower than 0.2 but
higher than 0.01 render almost 100% accuracy for 4 pat-
terns (refer to Table 2 for the experimental settings). The
PSO algorithm proved to converge 80% faster at identify-
ing less than 5 patterns when compared to the EA. How-
ever the convergence was not achieved on 6 patterns with
the EA. PSO was unable to classify more than 6 patterns in
a reasonable amount of time. However, the BP algorithm
showed to have a better performance than both PSO and
EA. Figure 2 shows the results of training ANNs with PSO
and BP.

4.2 Time Window

The effects of reducing the time window are presented in
Figure 2. Trend lines are approximately linear for all but
the failure rates. A slower convergence for the training al-
gorithms when reducing the time window was expected due
to the noise impact increment. Represented in these graphs
and also recurrent during the experiments is the observation
that as long as it is possible to reach a fitness smaller than
0.1, it would be possible to reach almost 100% of accuracy.

4.3 Signal Features

It was found that although features can produce very sim-
ilar graphical representation of the same movements (Fig-
ure 3), some can be used alone (e.g. tstd, trms, tmabs)
while others barely allow any convergence by them selves
(e.g. tzc, cv, tvar, twl, fwl, fmn). A consistent result dur-
ing different runs of the experiment was that no more than
5 features are required to produce an acceptable accuracy.

11



100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

samples

tm
ab

s

 

 
Ch 1
Ch 2
Ch 3
Ch 4

100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

samples

tr
m

s

 

 
Ch 1
Ch 2
Ch 3
Ch 4

100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

samples

ts
td

 

 
Ch 1
Ch 2
Ch 3
Ch 4

100 200 300 400 500 600 700 800
0

50

100

150

200

250

300

samples

tw
l

 

 
Ch 1
Ch 2
Ch 3
Ch 4

100 200 300 400 500 600 700 800
0

2

4

6

8

10

12

samples

fw
l

 

 
Ch 1
Ch 2
Ch 3
Ch 4

100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

samples

tv
ar

 

 
Ch 1
Ch 2
Ch 3
Ch 4

Figure 3. These plots show a graphical representation of
two movements using 6 different signal features extracted
from 4 channels (4 bipolar electrodes) sampled at 10 kHz.
The first part of the plot (180 to 380 samples)corresponds
to hand open and the second part (550 to 750 samples)to
hand close. Although these signals show similar graphs
shapes, only the first row (tmabs, trms and tstd) are useful
for pattern recognition since the second row (twl, fwl and
tvar) hardly allow convergence using settings from Table 7.
Results of using the first row of signal features for pattern
recognition are shown in Figure 4.

More than 5 features not only slows down the training but
also reduces the possibility of convergence, e.g. 21 features
produced 100% failures using settings in Table 6.

The best individuals found were tested for a 10 pattern
recognition task using surface recordings from 11 subjects
(7 male, 4 female) with average age of 30.8 (min: 22, max:
50, std: 12.7). Experiment settings are summarized in Ta-
ble 6 and the results are presented in Figure 4. Error-bars
show the mean, minimum and maximum of the accuracy
and training length. Another way to measure accuracy is
to divide the number of correctly predicted patterns over
the total number of pattern analyzed, which is obviously
a number smaller than the neuron-firing accuracy (Figure
2) but does not necessarily represent the same behavior at
different scales. For this experiment both accuracies are
shown since there are differences worthy of note, such as
the accuracy of KS5.

The convergence produced with the feature sets is
shown as a failure percentage with error-bars representing
the mean (general failure rate, GFR) and standard devia-
tion. The standard deviation was more representative than
the minimum and maximum value in this case. Moreover,
the percentage of subjects for which no convergence was
achieved (relative failure rate, RFR) is also presented. The
GFR represents only a part of robustness of the feature set
since it does not show what happens with individual sub-
jects, i.e. a given percentage of failures can consist of rela-
tively small contributions from all subjects or large contri-
butions from a few subjects.

Parameter Value Parameter Value
Subjects: 11 Time window (ms) 200
Age: 30.8 ± 12.7 Max trainings 2 000
Male % : 64 Reset threshold 1 000
Ne: 10 ANN topology: SLP & MLP
Nr : 3 ANN hidden neurons: 3 ∗ inputs
Tc: 6 ANN hidden layers: 1 & 2
Tr : 6 BP η 0.05
Pct: 0.5 BP α 0.10
Simulations 110 Training sets perNe: 18
Normalization: Yes Validation sets perNe: 9
Filtering: PLH Test sets perNe: 18

Table 6. Summary of the settings used to validate the sets
of features found by the Genetic Algorithm

GFR SLP MLP
KS4 KS5 KS4 KS5

NS2b 2.7% -9.1% -4.5% -12.7%
NS3b 20.0% 8.2% 13.6% 5.5%
NS4 15.5% 3.6% 3.6% -4.5%

RFR SLP MLP
KS4 KS5 KS4 KS5

NS2b 9.1% -% 9.1% -9.1%
NS3b 18.2% 9.1% 18.2% -%
NS4 9.1% -% 9.1% -9.1%

Table 7. Summary of the improvements on convergence of
the features sets found by the GA versus known sets used
in previous studies. The general failure rate (GFR) corre-
sponds to the total number of failures from all the subjects
over the number of simulations. The relative failure rate
(RFR) corresponds to the number of subjects where con-
vergence was not achieved over the total number of sub-
jects.

The new sets (NS) of signal features {tstd, tmrs}
(NS2b), {tstd, fwl, fmd} (NS3b) and {tmabs, fwl, trms,
tzc} (NS4) produced the best performance in terms of ac-
curacy, training length, and failure rate. These two sets
were compared with known sets (KS) used in other pub-
lications: KS4= {tmabs, tzc, tslpch, twl} [13, 21, 22], and
KS5= {tmabs, tzc, tslpch, twl, trms} [8] which is also the
set with the most common features found in the litera-
ture [3, 13, 15, 16, 18–22]. Interestingly, the EA tended to
converge strongly to the KS5 as local optima. The improve-
ment of the new sets over the known sets is summarized in
Table 7, the best improvement was found with NS3b as it
had the lowest rate of failures. KS5 has a lower failure rate
than all the other sets aside from NS3b, but only for a MLP
and with a wider variability in accuracy. NS3b, on the other
hand, appears more stable for both ANN topologies.

5 Discussion

The PatRec accuracy is directly affected by the PatRec al-
gorithm itself, the PatRec training algorithm, the time win-
dow used to compute the signal features, the signal features
used as inputs of the PatRec algorithm, and the signal ac-
quisition and processing. The first two have been widely
investigated but little has been said about the rest. EA

12



trms tmabs tstd NS2a NS2b NS3a NS3b KS4 NS4 KS5
80

85

90

95

100

Sets of features

A
cc

ur
ac

y 
(%

)

 

 

SLP Neurons Accuracy
MLP Neurons Accuracy
SLP Patterns Accuracy
MLP Patterns Accuracy

trms tmabs tstd NS2a NS2b NS3a NS3b KS4 NS4 KS5
0

500

1000

1500

2000

Sets of features

T
ra

in
in

gs

 

 
SLP
MLP

trms tmabs tstd NS2a NS2b NS3a NS3b KS4 NS4 KS5
0

20

40

60

80

100

Sets of features

F
ai

lu
re

s 
(%

)

 

 
SLP GFR
MLP GFR
SLP RFR
MLP RFR

Figure 4. Comparison between new sets (NS) of signal feature optimized by a Genetic Algorithm and known sets (KS) used in
previous research. The discovered sets are: NS2a = {tstd, fmn}, NS2b = {tstd, trms}, NS3a = {tambs, fwl, tzc}, NS3b = {tstd,
fwl, fmd} and NS4 = {tmabs, fwl, trms, tzc}. The known sets are: KS4 = {tmabs, tzc, tslpch, twl}, and KS5 = {tmabs, tzc,
tslpch, twl, trms} which has the most common features found in the literature. Performance of single features is also presented
in order to show that high rates of accuracy can be reached compromising convergence. Although accuracy improvement
versus known sets is not significant, the new sets show a better rate of convergence which is argued as more suitable for
practical implementations. The general failure rate (GFR) corresponds to the total number of failures from all the subjects over
the number of simulations. The relative failure rate (RFR) corresponds to the number of subjects where convergence was not
achieved over the total number of subjects.

and PSO here were presented as training algorithms and
although PSO showed better performance than EA, the tra-
ditional algorithm of Back-propagation proved to be more
efficient.

Since these algorithms work in different ways, their
speed of convergence depends on different factors. PSO
and EA required a batch of evaluations per individual or
particle to perform one training, while BP required a batch
of evaluations per training. A batch of evaluations corre-
sponds to evaluation of all training sets. The latter produces
Formula 2, which also applies for the EA.

EPSO = PPSO ∗ EBP (2)

where EPSO and PPSO are the evaluations and par-
ticles of the PSO respectively, and EBP the evaluations of
the back-propagation algorithm. It can be argued that al-
though PSO and EA required more evaluations per train-
ing, it is possible that the number of trainings required for
convergence is smaller. According to Figure 2, however,
this does not appear to be the case.

Although EAs and PSO could be used to train ANNs
to identify a small number of patterns, their performance
was very poor for more complex recognitions. The num-
ber of variables to be optimized by an EA or a PSO aim-
ing to train an ANN (SLP with 48 hidden layer neurons)

to recognize 10 patterns using 4 signal features would be
1306. This is a rather large number for common imple-
mentations of these algorithms, and might be an indication
that they should not be used to perform the whole training
but rather to optimize it. Studies to explore this idea will
be performed in the future.

An interesting phenomena and property of ANNs is
their capability to predict results for which they have not
been trained. In numerous instances during on-line recog-
nition, correct prediction of combinations of movements
was observed (i.e. wrist flexion with hand opening). The
capability for simultaneous control will be studied in the
continuation of this work.

A time window from 100 to 200 ms is commonly
found in the literature [15, 16, 20–22]. In this experi-
ment a significant increase in failures occurred for windows
smaller than 200 ms indicating it is a suitable length of
time. A real-time control experiment using a conventional
myoelectric hand where the delay caused for a 200 ms TW
was unperceived for the user was performed to evaluate the
practicality of using such length. However, the trade-off
between accuracy and speed must be considered in each
practical implementation since the hardware likely plays a
major role.

Despite the fact that the failure rate was not explicitly
considered in the fitness function used by the Genetic Al-
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gorithm, it was able to produce sets of signal features with
better convergence rates. This was due to the fact that a
failed training would have the maximum number of evalua-
tions and, since it did not converge, the accuracy and fitness
of such an ANN would be low.

The performance of a set of signal features was quan-
tified via a combination of accuracy, training speed, and
failure rate. It is important to maintain a good balance be-
tween these 3 factors for a viable implementation. For in-
stance, a high failure rate indicates success with only lim-
ited number subjects, even in the presence of high accuracy
and fast training. Most of the literature found does not dis-
close figures for the training length and/or training failures
even though both parameters are critical in a clinical end-
use environment. Higher accuracies can clearly be reached
with longer training times and high training failures but
such an implementation is simply impractical. Although
insignificant improvement was observed in accuracy when
using the new sets of features in place of the most common
ones, the failure rate was reduced by approximately 10%.
Such an implementation is thus favorable in a clinical envi-
ronment where patients with varying muscle strengths will
be treated. Similar results were found with two different
ANN topologies (SLP and MLP), however, it is worty of
mention that verification with different PatRec algorithms
is required in order to assess if a given set of features is
algorithm specific.

It was observed that longer trainings are required
when using few signal features (Figure 4), which is not sur-
prising if we consider that the ANN is fed with more infor-
mation about the system. However, this can not be general-
ized since the training time as well as the other performance
indicators will depend on the signal features forming the
sets. Several signal features might reduced the training
time but it will also slow down the signal processing and
thus result in a slower real-time control. In this experiment
all the signal features were already available and therefore
the signal processing time was not taken into account.

It was found that single signal features can produce
high accuracy rates for few subjects but hardly converge
for others. Upon scrutiny of the raw recordings of subjects
with poor convergence, it was found a relatively high level
of noise and low amplitude in comparison to the others
where convergence for several feature sets was achieved.
The reason for this could be a low muscular mass, the
position of the electrodes, or any other environmental or
methodological factor of the recording session. The latter
issues could be resolved and the recording session could
simply be repeated, but a low muscular mass is a more dif-
ficult problem to solve. It is precisely this kind of situa-
tion for which a more descriptive and robust set of features
could be considered useful. Intuitively, the use of such a
set of features and in conjunction with a carefully executed
recording session, would improve the system’s predictions
capability and overall robustness.

6 Conclusion

ANNs proved to be a good classification algorithm for this
application although EA and PSO did not show any sig-
nificant advantage over traditional training algorithms. It
was also confirmed that the common practice of employing
time windows of 200 ms produces acceptable accuracies
while remaining short enough for a real-time control of at
least 10 movements. Ten movements already exceeds the
state-of-art for DoF that are directly controlled by patients
with commercial prosthesis.

It is widely known that acceptance of myoelectric
prostheses is difficult to achieve. A robotic prosthesis that
requires high concentration levels from the patients are im-
practical for daily life. Despite the fact that pattern recog-
nition algorithms and control engineering have been used
since the 1980’s to try to achieve a more natural control
of artificial limbs, a long-term implementation is sadly still
out of reach for amputees. These experiments were part
of a research effort with focus on practical implementa-
tions. Analyzing different signal features was thus one
of the chief considerations in order to reach this objec-
tive. Although no major benefits on accuracy were ob-
served with the newly discovered sets of features, the rate
of failures was reduced by roughly 10% in comparison to
more conventional implementations. Further studies are
still required in order to evaluate the new sets during on-
line recognition.
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