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Abstract—Despite the technological progress in robotics
achieved in the last decades, prosthetic limbs still lack function-
ality, reliability, and comfort. Recently, an implanted neuromuscu-
loskeletal interface built upon osseointegration was developed and
tested in humans, namely the Osseointegrated Human-Machine
Gateway. Here, we present an embedded system to exploit the ad-
vantages of this technology. Our artificial limb controller allows
for bioelectric signals acquisition, processing, decoding of motor
intent, prosthetic control, and sensory feedback. It includes a neu-
rostimulator to provide direct neural feedback based on sensory
information. The system was validated using real-time tasks char-
acterization, power consumption evaluation, and myoelectric pat-
tern recognition performance. Functionality was proven in a first
pilot patient from whom results of daily usage were obtained. The
system was designed to be reliably used in activities of daily liv-
ing, as well as a research platform to monitor prosthesis usage and
training, machine-learning-based control algorithms, and neural
stimulation paradigms.

Index Terms—Electromyography (EMG), prosthetic controller,
osseointegration, pattern recognition, osseointegrated human-
machine gateway (OHMG), sensory feedback.

NOMENCLATURE

AFE Analog Front-End.
ALC Artificial Limb Controller.
DC Direct Control.
EMG Electromyography.
ENG Electroneurography.
LDA Linear Discriminant Analysis.
MCU Microcontroller Unit.
MPR Myoelectric Pattern Recognition.
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MSPU Mixed Signal Processing Unit.
NS Neurostimulator.
OHMG Osseointegrated Human-Machine Gateway.
PCCU Prosthetic Control and Communication Unit.
SVM Support Vector Machine.

I. INTRODUCTION

D ESPITE the advances in prosthetic hardware that allow an
increasing number of artificial joints to approach those of

the lost limb [1], a major issue remains unsolved, namely, how
to achieve a reliable and natural control of the prosthetic limb.
After many years of research and development on prosthetics,
amputees mostly rely on direct control (DC) (also known as one-
for-one control, or one-muscle to one-function), which is often
combined with sequential solutions for grasp switching based
on encoding unnatural muscular activation (e.g., co-contraction)
[2]. This control mechanism is pervasive owing to its simplic-
ity, relative reliability, and ease to learn. Unfortunately, the
functional outcome is commonly related to the specific patient
predisposition, thus often resulting in rejection of the myoelec-
tric prosthesis, or in reduction of the robotic potential to a simple
prosthesis claw [3]. Modern prostheses are hindered by dis-
comfort and poor functionality [4]–[6]. The latter has pushed
research towards the challenge of using information from the
neuromuscular system in more surgically and technologically
sophisticated manners [7]–[9].

Comfort and functionality had been considerably improved
by the use of osseointegration for direct skeletal attachment of
limb prostheses [10], [11]. Osseointegration provides a long-
term, mechanically stable interface between biology and the
artificial limb, in which a titanium implant is surgically inserted
into the remaining bone of the amputated extremity [11]. The os-
seointegration technology has been recently enhanced to allow
bidirectional communication between implanted neuromuscu-
lar electrodes and the artificial limb [12]. This Osseointegrated
Human-Machine Gateway (OHMG) combines the benefits of
skeletal attachment with the reliability and increased informa-
tion provided by implanted muscular electrodes [13], [14]. The
first attempts on using implanted electrodes to restore sensory
feedback were conducted over 40 years ago [15], and several
others were reported more recently [16]–[19]. Despite the ef-
forts, close-loop control has not been achieved yet in activ-
ities of the daily living arguably due to the lack of a suitable
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Fig. 1. Artificial Limb Controller (ALC). The system is composed by three modules: Neurostimulator (NS), Mixed Signals Processing Unit (MSPU) and
Prosthetic Control and Communication Unit (PCCU). An external module can be plugged on the side of the system to achieve Bluetooth communication.
Myoelectric signals are acquired from the implanted epimysial electrodes and then digitally processed to decode the motor intention of the user. In parallel, sensors
on the prosthesis are periodically read and their output converted into stimulation pulses to the nerve via cuff electrode.

communication interface. The OHMG now provides a clinically
viable long-term access to implanted neural interfaces that can
be used for bidirectional communication to accomplish such
purpose.

Here we present the development of an embedded system to
exploit the advantages of the OHMG technology. Efforts were
placed in hardware and software design, carefully seeking a
balance between the computational demand and capabilities of
the core processor. Our Artificial Limb Controller (ALC) was
designed as a self-contained wearable unit capable of decod-
ing motor volition and providing direct neural sensory feedback
(Fig. 1). This ensemble provides a clinically viable solution
for the control of upper limb prostheses, as well as a research
platform for further investigations. The ALC’s design and val-
idation in real-time myoelectric pattern recognition (MPR) are
described in this study.

II. BACKGROUND AND RELATED WORK

Prostheses are probably the first form of rehabilitation in his-
tory. In 1963 Wirta et al. reported a historical first example of an
embedded MPR system [2]. A decade later similar technology
was developed in Sweden [20]. In both studies, custom robotic
arms were designed and Discriminant Analysis was chosen as
the classification algorithm.

The interest on myoelectric control systems grew for decades
developing in parallel with the computation capabilities of pro-
cessing units. Most recent studies report similar approaches
for real-time motor volition decoding using personal computers
(PC) [8], [21].

In 2008, Tenore et al. demonstrated the challenges of im-
plementing the MPR chain in a microcontroller (MCU) based
system [22]. They trained their classifier using a PC and then
used a fixed-point digital signal processor to compute floating-
point operations. The additional efforts to compute floating-
point calculations resulted in delays and reduced accuracy due
to rescaling. They concluded that a processor natively capable of
floating-point operations was necessary. Hirata et al. designed
an embedded MPR system that allowed for on-board training

[23], and a similar but open and configurable embedded plat-
form for research purposes was developed by Liu et al. [24].
The previous studies relied on powerful but power demand-
ing processors (e.g., PXA270-Intel and CortexA8-ARM), which
poses energy challenges for a wearable solution. Recently, a low
power solution was presented by Benatti et al. using an embed-
ded controller based on a Cortex-M4 MCU with floating-point
capabilities [25]. A Support Vector Machine (SVM) classifier
was implemented using off-board training and reported a clas-
sification accuracy of 90%. This accuracy was computed by
an equivalent algorithm implemented in Matlab (Mathworks,
USA) using a PC, thus limited information was provided on the
MCU performance. All the aforementioned studies provided no
assessment of real-time performance.

Approaches using field-programmable gate arrays (FPGA)
have shown to be highly beneficial for accelerating the com-
putation of pattern recognition algorithms [26], [27]. FPGAs
represent a valuable solution for prosthetic control which is
predestined to appear in future embedded MPR systems, but
currently no clinical implementation of such system has been
reported.

To date there is a single commercially available embedded
MPR system from which limited information is available due
to its commercial nature (COAPT, Chicago, USA). Although
clinical investigations are ongoing, no results have been made
publicly available in the scientific literature.

Here we present a low-power embedded MPR system vali-
dated in real-time. Our ALC contains a commercially available
analog front-end (AFE) and a low power 32-bit MCU with a
floating-point embedded unit. It follows the literature standards
on electromyography (EMG) acquisition [28] and advanced my-
oelectric control techniques [29]. Direct control as well as two
machine learning algorithms were implemented, namely Linear
Discriminant Analysis (LDA) and SVM. All processing tasks
were timed and a full report is provided here to support ALC
real-time capabilities.

Sensory feedback plays an important role in human motor
control, and therefore a neurostimulation stage was also in-
cluded in our self-contained ALC to exploit the direct neural
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Fig. 2. Artificial Limb Controller: a) electronic modules; b) attachment device
and aluminum case with electronic modules; c) Bluetooth dongle; d) represen-
tation of electronic modules inside the case.

connection provided by the OHMG [12]. The ALC was also
instrumented with inertial sensors as this might further improve
controllability by mitigating the effect of arm positioning [31],
or simply to exploit sensor fusion approaches [32].

The ALC was designed to be a clinically viable solution
for daily life use, as well as a research platform compatible
with the OHMG. It allows for close-loop control of myoelectric
prostheses using up to eight EMG channels, along with three
neurostimulation channels.

III. SYSTEM DESCRIPTION

In addition to the electromechanical couplers and casing, the
ALC is composed by three modules:

1) Mixed Signals Processing Unit (MSPU),
2) Prosthetic Control and Communication Unit (PCCU).
3) Neurostimulator (NS).
These three modules were designed on dedicated Printed Cir-

cuit Boards (PCB) using commercially available integrated cir-
cuits. They comprised a stackable design with an outer round
shape of 60 mm diameter and total height 20 mm. Overall di-
mensions were chosen to fit commercially available prostheses
for transhumeral amputees. The ALC system is shown in Fig. 2
with and without its case. The outer aluminum case has a 70 mm
diameter and 30 mm height. Together with the OHMG and pros-
thetic electromechanical attachments the overall system height

is 70 mm. The core of the ALC system is the MSPU, a combina-
tion of a low-power AFE and an advanced multi-purpose MCU.
The NS is managed by its own MCU, which is set as slave device
of the MSPU. The PCCU directly interacts with the prosthesis
but also includes other features like inertial sensors and a SD
card slot.

A. Mixed Signal Processing Unit (MSPU)

The MSPU includes a low-power, low-noise AFE (ADS1299,
Texas Instruments, USA) with measured Input Referred Noise
of 2.58 μVpp and Common Mode Rejection Ratio of 116 dB
[33]. It has eight independent differential channels digitized at
24-bit at different selectable sampling rates. Signals are over-
sampled at 1.048 MHz and low-pass filtered with a digital third
order sine decimation filter, which cut-off frequency is directly
proportional to the chosen output data rate. For EMG acquisi-
tion, data rate was set on 2000 samples per second that turned
in a low-pass filter at 512 Hz. Moreover, anti-aliasing filters
(≈6 kHz) were allocated in the PCB before the ADS1299 in-
puts. The AFE communicates with the MCU via SPI lines with
a serial clock rate set at 18 MHz.

The MSPU’s MCU manages the data flow between all mod-
ules. It administrates the bioelectric signal acquisition from the
AFE and executes signal pre-processing (i.e., digital filters). It
decodes the subject’s motor intention, from building the over-
lapped time windows and extracting the features, to the exe-
cution of the pattern recognition algorithms. It also manages
the communication and data transfer with external devices, al-
lowing real-time visualization of bioelectric activity, as well as
adjustments of control parameters from a PC or mobile device.

Considering the main characteristics of the ALC, such as
wearable and capable of advanced processing, the MCU was
selected giving the following features ordered by priority:

1) computation capabilities (architecture and memory),
2) power consumption,
3) digital signal processing and compatibility with floating-

point computations,
4) peripherals and interfacing features, and
5) footprint area.
There is a rather broad range of possible commercial choices

in the market regarding multi-purpose MCU, where recent ARM
32-bit cores play a leading role. The energy consumption of 8-
and 16-bit cores is normally lower than 32-bit MCUs, obviously
contrasting with their superior computation performance. Given
their availability and superior computational power, a 32-bit
core was deemed as preferable for this project if low-power
consumption provided. The main MCU was chosen to be the
TM4C123GH6PM (Texas Instruments, USA), based on a 32-bit
ARM Cortex-M4F core. This core is the most power efficient
of the Cortex-M family with a sustained processing power up
to 1.25 DMIPS/MHz. It has a reduced instruction set computer
core based on a three-stage pipeline with separate fetch, decode,
and execute units that allow most of the instructions, including
multiply, to run in a single clock cycle. It also contains an
embedded floating-point unit (single-precision), an advanced
high-performance bus, 256 KB of flash memory, and 32 KB of
SRAM structured in Harvard architecture.
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Fig. 3. Neurostimulator: one-channel electrical circuit. Two opto-isolated current sources generate a biphasic pulse. The first phase is the stimulation pulse
(Istimulation, circuit on the right) and the second phase is the recovery pulse (Irecovery, circuit on the left). A blocking capacitor (Cs) is placed in series with
the tissue impedance for safety purpose. The discharging resistor (Rs, 1 MΩ) allows the remaining net charges on the capacitor to flow through the electrodes for
charge balancing.

B. Prosthetic Control and Communication Unit (PCCU)

The PCCU represents the tool box of the system. The lo-
cation of PCCU was strategically decided as the module clos-
est to the prosthetic device to minimize wiring. The ALC can
control prosthetic devices using digital and analog signals. In
the first case, prosthetic movements are commanded via digi-
tal communication protocol (UART, CAN, SPI), whereas in the
latter case, motors are driven by an analogue voltage signal,
as commonly provided by commercially available electrodes
for myoelectric prostheses. The PCCU contains the following
components:

1) micro SD memory card for storing usage data;
2) three axis accelerometer and gyroscope;
3) connector for external Bluetooth dongle;
4) six analog control outputs with a range of 3.3 volts. These

are buffered RC filters converting PWM signals into DC
voltages;

5) access to the MSPU’s UART/SPI lines for digital control;
6) CAN transceiver for digital control;
7) audio signalling piezoelectric buzzer.

C. Neurostimulator (NS)

The NS module is at the top of the ALC stack in its own
half-moon shaped PCB. It is connected to the MSPU via a
10-pin connector for power and communication (SPI). It uti-
lizes an ultra-low power MCU (MSP430F2617, Texas Instru-
ments, USA) programmed to execute and acknowledge com-
mands sent from the MSPU. The NS ultra-low power MCU
works on 500 μA average current consumption, reduced by a
thousand times during stand-by mode. The stimulation pulses
start as voltage signals from dedicated digital-to-analog convert-
ers, and then fed into opto-isolated voltage-to-current converters
which finally deliver the current stimulation pulses. In this first
version of the ALC, three stimulation channels are available
with independent control of pulse amplitude, width, and fre-
quency. Each channel can output asymmetric, charge-balanced,

bipolar pulses from −500 μA to 500 μA, limited by a 10 V
to −10 V output, and with less than 100 nA leakage current.
A blocking capacitor was placed in series with the cathode to
prevent steady currents under faulty conditions. A 1 MΩ resistor
is also present in parallel to the biological impedance and, in
conjunction with the blocking capacitor, helps correct charge
imbalance. The electrical circuit of each channel is represented
in Fig. 3. The core of the NS stimulation circuit is a photovoltaic
cell used as a controlled current source which output is modu-
lated via a light emitting diode (LED) (photocoupler TLP3914,
Toshiba). This is an entirely passive system that generates the
current delivered to tissue from the conversion of LED-sourced
photons to photovoltaic cells electrons with a conversion ef-
ficiency of 2.5% ± 0.5%. The result of such configuration is
an electrically floating output with two immediate advantages:
1) improved safety, and 2) improved capability of physio-
logical signals measurement during stimulation, as electrical
isolation strongly diminishes stimulation artefacts. The major
drawback is the non-linearity of the conversion from LED
current to photovoltaic cell current and its sensitiveness to
thermal conditions; this issue can be resolved with a care-
ful calibration of the device. Following the standard in neu-
rostimulation, a single stimulation event is composed by three
phases:

1) stimulation pulse: cathodic current pulse with defined am-
plitude and width that elicits the initiation of an action
potential;

2) interpulse: 50 μs of zero current to allow charges to flow
in the tissues [34];

3) recovery pulse: anodic reversal phase that avoids the po-
larization of the cells by sinking back the released current
during the previous stimulation phase, and thus restoring
ionic concentrations in the tissues. For charge balancing
purpose, this current pulse amplitude is 10 times smaller
in amplitude and 10 times longer in width. This reversal
phase has been chosen slow to reduce the risk of electrode
corrosion [35].
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Fig. 4. Finite-State-Machine diagram. The Artificial Limb Controller can
be operated in two different modes: control and communication. The default
control-mode imposes the device to cyclically execute the control task looping
between acquiring a new time window, extracting the features, performing the
classification, reading sensors and updating the stimulation, and executing the
classified movement. The control-mode can be paused switching the device to
the communication-mode. Thus, it stays in idle state waiting to receive and
execute commands sent by external connected devices. Communication-mode
is especially used for read and modify settings or test purposes.

IV. FIRMWARE

The ALC works as a Finite-State-Machine (diagram on Fig. 4)
triggered by interrupts, which priorities were thoroughly defined
during the design phase.

A. Device Initialization

The device initialization takes place within the first second
after power on. All internal MCU peripherals are prepared for
use, such as system clock, ports, and timers. The external periph-
erals are initialized using digital communication lines. Inertial
sensors are set to output new samples at a frequency of 416 Hz.
The AFE configuration registers are written in order to setup the
acquisition to 2000 SPS and gain set to 1. The SD memory card
is configured to work using the SPI protocol. Consequently, gen-
eral configuration data are retrieved from memory to be available
in RAM after every reboot, e.g., control and neurostimulator’s
settings.

B. EMG Signal Acquisition and Preprocessing

EMG signal quality is crucial in myoelectric controlled
prosthesis. The ADS1299 has a data ready output signal that
can be used to trigger an interrupt in the MCU for reading
new samples. Although most of the applications use this
approach, we preferred to trigger the reading interrupt by a
timer set on the selected sampling frequency of 1000 Hz. In this
way the MCU sampling frequency can be independent from

the ADS1299 output data rate and its corresponding signal
bandwidth. Consequently, the sampling frequency can be easily
changed externally via PC or mobile device. A low-pass filter
at 524 Hz comes embedded with the ADS1299, while 20 Hz
high-pass and power line notch (f = 50 Hz, Q = 35) filters are
implemented via firmware. In this work a simplified setup was
used, such as using 2nd order filters as a compromise between
signal quality and computational demands. A design choice
was to apply the digital filters in a by-sample approach instead
of by-window. This decision was based on the consideration
that the most demanding moment in the real-time execution
is when a new window has been acquired. Thus, the filters
processing was distributed over all samples.

C. Signal Processing, and Control Algorithms

A standard chain of MPR data processing was implemented
in the MCU, flexible enough so that main processing parame-
ters can be changed via external back-end. Input samples are
gathered into time windows of 200 ms with 50 ms increment.
Thus, a new control output is generated every 50 ms. Common
signal features are extracted from the acquired EMG, such as
Mean Absolute Value (MABS), Waveform Length (WL), Slope
Changes (SLPCH) and Zero Crossings (ZC) [30]. This config-
uration was chosen to be consistent with the literature in MPR.
The extracted features are available in a feature vector ready to
feed the decoding algorithm (Fig. 4). Then, the last part of the
time window is slid to create overlapped windows.

Three different control algorithms were implemented and
evaluated offline and in real-time, namely DC, LDA [29], and
SVM [36]. DC is the standard direct control where one channel
drives only one movement. It averages the signal within the time
window (mean absolute value) and compares this value with a
threshold for motor activation. Pattern recognition algorithms
(LDA and SVM) require more processing as more features need
to be extracted and the algorithm-specific computations need to
be performed. They also require memory where to store coeffi-
cients needed for classification. The classifiers were trained in
a PC via an open source, pattern recognition research platform
named BioPatRec [37]. Successively, coefficients were down-
loaded into the MSPU’s RAM and available for real-time classi-
fication. On-board training was not a priority at this initial stage
and it is reserved for future developments. A Linear SVM was
chosen for implementation, supported by the empiric consider-
ation that it performs well enough so that a non-linear kernel
transformation is unnecessary [38]. Given a feature vector x,
LDA and linear SVM operate the classification in a similar way
(1), their main difference is in the way they find the separating
hyperplanes.

fk (x) = sign(ωkx + bk ) (1)

where for k classes: bk are bias terms and ωk are normal vec-
tors to the hyperplanes. The normal vectors were pre-calculated
in the PC in order to relieve the MCU from unnecessary re-
current calculations, as well as saving space in memory from
parameters such as discriminant coefficients or support vec-
tors. For example, the training of a SVM for the classification
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task addressed in our study (7 movement classes, 6 EMG chan-
nels and 4 features per EMG channel) required 12,028 bytes
(120SuppVectors6×4 + 120weights + 7bk ). By pre-calculating
the normal vectors we transferred to the MCU only 679 bytes
(7ω6×4

k + 7bk ), resulting in a 17:1 compression ratio (94% re-
duction in memory).

D. Control and Communication Mode

The ALC is meant to work in two modalities: control and
communication (Fig. 4). The default control-mode imposes the
device to cyclically execute the control task looping between
acquiring a new time window, extracting the features, classifi-
cation, reading sensors, updating the stimulation and executing
the movement. Also, a SD card is used, triggered by a timer, to
continuously log data with the aim of monitoring all relevant
process. The values of the predicted movements are stored along
with extracted features, hand force sensors, accelerometer, gy-
roscope, temperature and battery voltage. This data can be later
analyzed in order to better understand prosthetic use and for the
evaluation of potential sources of errors.

The system was designed to wirelessly interface a PC or
mobile devices for prosthetic fitting, monitoring and data man-
agement via Bluetooth link. An external communication board
(Fig. 2(c)) must be connected to the main stack as represented
in Fig. 1 to enable wireless communication. By doing this,
the control-mode can be paused switching the device to the
communication-mode. Thus, the system stays in idle state wait-
ing to receive commands via Bluetooth and consequently ex-
ecute them before returning to idle state. Several commands
are available and can be utilized mostly by technicians for test-
ing purposes. Commands can vary from reading firmware ver-
sion, enabling/disabling filters, streaming out EMG signals or
the classifier prediction outputs, and updating control param-
eters like changing thresholds or load new pattern recognition
coefficients.

E. Neurostimulation

While the control procedure is cyclically repeated, sensors in
the robotic hand must be processed and converted into stimula-
tion pulses to elicit the perception of touch.

The robotic devices utilized for this experiment were provided
by Ottobock (Vienna, Austria): a 12K50 myoelectric elbow and
a SensorHand. The SensorHand has three embedded pressure
sensors that are available to be read only if the device is correctly
switched into digital mode via a proprietary communication
protocol.

An intuitive stimulation pattern was implemented where the
amplitude and pulse-width are constant while the frequency
varies proportionally with the grasping force. In this approach
the higher the pressure, the higher the stimulation frequency
(stronger sensation) (Fig. 5). For safety reasons, it was decided
to limit the frequency of stimulation to 30 Hz as this system is
aimed for chronic use [39].

Fig. 5. Direct neural sensory feedback. The stimulation pulse amplitude and
width were constant while the frequency varied proportionally to the grasping
force. In the current approach at a higher pressure, a higher stimulation frequency
(stronger sensation). This figure shows an example in which as soon as the
muscle’s contraction reached the activation threshold, the hand started to close
until making contact with an item, at which point the stimulation frequency was
increased proportionally to the force applied. In the last part, the user opens the
prosthetic hand to release the item.

TABLE I
SPECIFICATIONS OF THE ARTIFICIAL LIMB CONTROLLER

General Input Specifications

Differential
Channels

Sampling Resolution
[bit]

IRN
[μVpp]

CMRR [dB]

8 24 2.58 116

Stimulation

Channels Settable Parameters

Current [μA] Pulse-Width [μs] Frequency [Hz]
3 10 to 500 50 to 500 1 to 100

with steps of 10 with steps of 10

Control

6 x Analog Outputs, CAN, SPI, 2 x UART

Others

SD card, 3 axis Gyroscope + Accelerometer, piezoelectric buzzer, Bluetooth capability

Power Consumption

Supply
Voltage [V]

Idle Mode [mA] Control
Mode [mA]

Streaming Data
(Bluetooth) [mA]

≥ 5.5 50 65 90

V. EXPERIMENTAL TESTS AND RESULTS

A. Specification and Power Consumption

The ALC specifications are given in Table I. The ALC draws
different currents depending on the operation mode. When the
Bluetooth module is plugged and data is streamed to an external
device, the ALC drains 90 mA. More importantly, when the
system works in the standard control-mode it needs a minimum
current of 65 mA, which is reduced to 50 mA in idle mode. The
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TABLE II
MCU TASK TIMING FOR 8 CHANNELS AND 7 MOVEMENTS

battery life for a standard prosthetic setup combined with the
ALC was found to be 15 to 18 hours per day during four weeks
out-of-the-lab verification period (more details about the setup
are provided in Section V-D).

B. Microcontroller Tasks Analysis

Time characterization of all processing routines is reported
in Table II. The most frequent deadline is the interrupt of the
sampling timer, and the most computations are required when
a new time window is ready to be processed (every 50 ms).
As expected, perfect schedulability was hard to achieve. The
ALC firmware in this particular implementation was not able to
perform all control related tasks within the time before a new
sample is ready to be read in the AFE (1 ms). The time required
by features extraction, classification and execution grows pro-
portionally with the number of channels used. However, with the
maximum number of channels (eight), this time was found to be
around three milliseconds, which means that only three samples
every new time window are discarded in order to complete the
control task.

C. Myoelectric Pattern Recognition Performance

The evaluation of EMG feature extraction was conducted in
the ALC and in a PC running BioPatRec using a pre-recorded
data set. No relevant discrepancy between embedded and PC
arithmetic was found (absolute error around 10−10).

Fig. 6. Comparison of offline tests between the ALC and BioPatRec. The
figure shows error percentages for Linear Discriminant Analysis (a) and Support
Vector Machine (b) for all subjects and all movements (OH = open hand, CH
= close hand, FH/E = flex hand or elbow, EH/E = extend hand or elbow, PR
= pronation of the hand, SU = supination of the hand, RST = rest movement,
AVG = average). In the case of the OHMG pilot patient flexion and extension
of the hand were replaced with elbow movements. No statistically significant
difference between averages was found (p = 0.77).

The MPR algorithms were tested offline and in real-time by
eight able-bodied subjects, a congenital transradial amputee,
and the OHMG pilot patient. Subjects were in a range of
29.2 ± 6.1 years old. The able-bodied and transradial sub-
jects were prepared with six pairs of surface EMG electrodes
(Ag/AgCl) for differential recordings equally spaced around the
most proximal third of the forearm. In the case of the OHMG
pilot patient, the ALC was directly connected to the OHMG im-
plant, comprising of two bipolar and three monopolar epimysial
electrodes for control, and one cuff electrode with three sites for
stimulation. The target movements were: hand open-close, hand
flex-extend, pro/supination of the wrist, and no movement. For
the transhumeral OHMG patient, hand flex-extend was replaced
with elbow flex-extend.

For all subjects, the Bluetooth dongle was plugged in the
side of the ALC’s case to achieve a wireless link with a PC.
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TABLE III
AVERAGE OFFLINE ACCURACY RELATED TO SAMPLING FREQUENCY

Sampling Frequency [Hz] Accuracy [%]

LDA SVM

2000 100 99.1 (std 0.2)
1000 100 99.9 (std 0.2)
500 98.8 (std 2.1) 98.2 (std 3.9)

All recordings were taken with BioPatRec software and stream-
ing the EMG data out of the ALC. EMG activity was visually
inspected in all channels before proceeding to the recording
phase. Then, subjects were sat in a comfortable position in front
of the PC and asked to follow instructions from the BioPatRec
software. Each movement was executed three times per record-
ing, alternating three seconds of contraction with three seconds
of relaxation. Training coefficients and offline accuracies were
processed on BioPatRec using 40% of data for training, 20%
for validation and 40% for test. The same test sets were also
used to process the offline accuracies on the ALC. Results are
compared in Fig. 6. In average, accuracies for both algorithms
were found to be around 98%. Also, no statistically significant
difference (Wilcoxon Signed Rank test, p = 0.77) was found
between averages accuracies on the ALC and PC, confirming
high performances of the floating-point computations on the
MCU.

Offline accuracy was also compared acquiring the signal at
different frequencies. Test was run at 500 Hz, 1 kHz and 2 kHz,
and following the same recording protocol aforementioned. Av-
erage offline accuracies are presented in Table III; no statistically
significant difference was found between the averages (Fried-
mans’s test, p = 0.14). Results are inline with previous studies
by others [25], [40].

The main focus of our validation procedure was the real-time
performance of the system. BioPatRec interface was adapted
to read the prediction outputs from the ALC. The Motion Test
was chosen as the most appropriate test to show real-time clas-
sification performance [8]. In this test, subjects were asked to
perform movements randomly prompted on a screen. For every
movement requested to perform, 20 noncontiguous cycles of
the classifier prediction had to be correct within 10 s (200 clas-
sifier cycles) to consider the particular movement completed
[41]. Each one of the implemented algorithms was tested in
separate Motion Tests. The order of execution was randomized
between participants to avoid any significant impact related to
familiarization with the test. Results are reported in Fig. 7. LDA
and SVM had comparable performance with average comple-
tion rates above 98%. In average, around nine misclassifications
happened before the first correct prediction. Moreover, com-
pletion time shows that generally 35 predictions were executed
before completing the task.

D. Neurostimulation and Out-of-the-Lab Verification

To validate the closed-loop control the OHMG pilot patient
was asked to grasp delicate objects while blindfolded and wear-

ing isolating headphones. The ALC was configured in propor-
tional DC and the patient was left to try the sensory stimulation
while grabbing different objects for approximately five minutes
prior evaluation. Selected items were eggs and grapes. The pa-
tient managed to gently grasp each object eight times, in two
testing sessions, without breaking or damaging them (32 success
grasps out of 32 attempts).

The OHMG pilot patient was provided with the ALC for four
weeks for regular use in his daily activities. The neurostimu-
lator was not included in the system for this trial. The pilot
patient was already using a myoelectric prosthesis with an ana-
log controller which provided the same functions as commer-
cially available myoelectric prosthetic electrodes. A simpler but
more robust robotic hand was preferred (VaryPlus, OttoBock,
Germany), sacrificing multiple gestures in favor of a stronger
and reliable power grasp (one degree of freedom). Wrist ro-
tation was avoided for the moment but considered for future
upgrades. The importance of a myoelectric elbow lock/unlock
switch in a transhumeral amputation was highly emphasized by
the OHMG pilot patient and thus implemented for daily use.
Finally, the ALC was set with proportional DC over triceps and
biceps for open and close hand respectively, combined with el-
bow lock/unlock by co-contraction. The subject used the ALC
for four weeks while real-time data was continuously stored in
the SD card for post-analysis.

VI. DISCUSSION

Offline and real-time validation of classification algorithms
played a crucial role in the analysis of the ALC. Despite the
single-precision arithmetic, the ALC was able to classify seven
different movements with an accuracy comparable to that of a
PC. Moreover, the Motion Tests showed high rate of correct
predictions for both classifiers. The ALC was able to function-
ally provide sensory information thanks to the neurostimulator
module. The system was also validated with the OHMG pi-
lot patient during a preliminary four weeks out-of-the-lab test.
Here, battery life was found to be 15 to 18 hours using a stan-
dard prosthetic device battery with capacity of 800 mAh. It is
worth to note that the neurostimulator was excluded from this
particular test and that the control was based simply on two in-
put channels (DC). The ALC power consumption was anyway
consistent with bench tests (Table I). Also, no power optimiza-
tion was implemented in the current firmware, which will be a
subject for future improvements.

The task timing test (Table II) shows the real-time behavior
of the ALC. As expected from the choice of using floating-point
arithmetic, perfect schedulability of all tasks was not achieved.
In fact, features extraction and movement classification can-
not be executed within the time that a new sample is ready from
the ADS1299. Processing delay resulted anyway consistent with
what reported in similar studies. Around three milliseconds need
to be invested for completing all control related tasks. A limi-
tation of the current implementation is that EMG acquisition is
temporary paused within that processing delay. An optimization
can be done on this side, such as collecting also those samples
that arrive while the control related tasks are still under execu-
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Fig. 7. Real-time test of the ALC classifications. Motion Test results, in a boxes and whiskers format, for all subjects and all movements. The symbol and the
line represent respectively the mean and median of each box. Accuracy (a), was calculated using the predictions during the completion time, and only completed
motions contributed. Completion Rate (b) is the rate of successful trials. Selection Time (c) is the time required to reach the first correct prediction (minimum time
is equal to the processing time window). Completion Time (d) is the time to reach 20 correct predictions (minimum time is given by the sum of a full time window
and 19 incremental windows). Note that all minimum times shown are calculated not taking into account the time needed for processing and wireless transmission
of the classification result.

tion. Integer arithmetic could be also implemented to establish
a complete performance comparison with floating-point com-
putation.

Purposely, no post-processing algorithms were applied to
mitigate misclassifications as our intent was to show the clas-
sification capability of the algorithms only. Nevertheless, cur-
rent feature extraction and classification time represent a small
enough delay as to allow further algorithms to produce a smooth
control output, such as majority vote or velocity ramp [42].

The offline accuracy for both algorithms did not change con-
sistently when the sampling frequency was reduced to 500 Hz.
Even though this must be confirmed with real-time test, it could
mean that the acquisition rate can be slowed down providing a
wider time frame for combining the classification with further
advanced signal processing.

Digital filters implementation can be further improved.
Table II shows the abundant free processing time between each
sample. This time could be spent for more advanced processing

or, if battery life becomes priority, the ALC can be set in sleep
mode to save energy. Similarly, higher order by-window FIR
filters will be tested in the future.

Inertial sensors were included in the system to complement
information on prosthetic use, and to potentially improve the
controllability of the system by incorporating such information
into the motor volition decoding. At this point this information
was not used in the control strategies but is available for future
developments.

Prosthetic control via electroneurography (ENG) signals rep-
resents an interesting opportunity enabled by the OHMG-ALC
system, and will be explored in future work. The ALCs ana-
log front-end allows for ENG recordings and whether it can
reliably extract extraneural activity in activities of the daily liv-
ing using a cuff electrodes is under investigation. In such case
different signal pre-processing, features extraction, and control
algorithms will have to be implemented and validated in this
platform.
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VII. CONCLUSION

An embedded digital controller was implemented in this work
aiming to exploit the advantages of the OHMG technology.
This system allows for bioelectric signals acquisition, process-
ing, decoding of motor intent, prosthetic control and sensory
feedback. Standard myoelectric control (direct control) was im-
plemented as well as two robust pattern recognition algorithms.
It includes a neurostimulator to provide direct neural feedback
aimed for restoration of tactile sensations. Hardware was thor-
oughly bench tested and validated in terms of real-time tasks
characterization and power consumption. Pattern recognition
accuracy was tested, both offline and real-time, showing promis-
ing results for clinical implementation. Functionality was finally
proven in a first pilot patient allowing him to blindly grasp del-
icate objects. The system was designed to be reliably used in
activities of daily living, as well as a research platform to monitor
prosthesis usage and training, machine learning based control
techniques, and neural stimulation paradigms.

ACKNOWLEDGMENT

The authors thank the Swedish Research Council (Veten-
skapsrdet), VINNOVA, the EU project DeTOP, all volunteers
who have taken part in the recording sessions, J. Millenaar for
designing system’s enclosure and illustration, A. Zepeda, F.
Ekasen, J. Lamkiewicz, and J. Kalmar for their valuable help
during this paper.

REFERENCES

[1] M. Johannes, J. Bigelow, J. Burck, S. Harshbarger, M. Kozlowski, and T.
Van Doren, “An overview of the developmental process for the modular
prosthetic limb,” in Proc. Johns Hopkins APL Tech. Digest (Appl. Phys.
Laboratory), 2011, vol. 30, no. 3, pp. 207–216.

[2] R. Wirta, D. Taylor, and F. Finley, “Pattern-recognition arm Prosthesis:
A historical porspective—A final report,” Bull. Prosthetic Res. J., vol. 10,
no. 30, pp. 8–35, 1978.

[3] K. Østlie, I. Lesjø, R. Franklin, B. Garfelt, O. Skjeldal, and P. Mag-
nus, “Prosthesis rejection in acquired major upper-limb amputees: A
population-based survey,” Disability Rehabil.: Assistive Technol., vol. 7,
no. 4, pp. 294–303, 2012.

[4] L. Pezzin, T. Dillingham, E. MacKenzie, P. Ephraim, and P. Rossbach,
“Use and satisfaction with prosthetic limb devices and related services,”
Archives Physical Med. Rehabil., vol. 85, no. 5, pp. 723–729, 2004.

[5] D. Farina et al., “The extraction of neural information from the sur-
face EMG for the control of upper-limb Prostheses: Emerging avenues
and challenges,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 22, no. 4,
pp. 797–809, Jul. 2014.

[6] A. Andrade et al., “Bridging the gap between robotic technology and
health care,” Biomed. Signal Process. Control, vol. 10, no. 1, pp. 65–78,
2014.

[7] O. Aszmann et al., “Bionic reconstruction to restore hand function after
brachial plexus injury: A case series of three patients,” Lancet, vol. 385,
no. 9983, pp. 2183–2189, 2015.

[8] T. Kuiken et al., “Targeted muscle reinnervation for real-time myoelectric
control of multifunction artificial arms,” J. Amer. Med. Assoc., vol. 301,
no. 6, pp. 619–628, 2009.

[9] T. Kung, R. Bueno, G. Alkhalefah, N. Langhals, M. Urbanchek, and P.
Cederna, “Innovations in prosthetic interfaces for the upper extremity,”
Plastic Reconstructive Surgery, vol. 132, no. 6, pp. 1515–1523, 2013.
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[14] M. Ortiz-Catalan, R. Brånemark, B. Håkansson, and J. Delbeke, “On the
viability of implantable electrodes for the natural control of artificial limbs:
Review and discussion,” BioMed. Eng. OnLine, vol. 11, no. 1, pp. 33–57,
2012.

[15] F. Clippinger, R. Avery, and B. Titus, “A sensory feedback system for an
upper-limb amputation prosthesis,” Bull. Prosthetics Res., vol. 10, no. 22,
pp. 247–258, 1974.

[16] J. Wright, V. Macefield, A. Schaik, and J. Tapson, “A review of control
strategies in closed-loop neuroprosthetic systems,” Frontiers Neurosci.,
vol. 10, no. 312, pp. 1–13, 2016.

[17] D. W. Tan, M. A. Schiefer, M. W. Keith, J. R. Anderson, J. Tyler, and
D. J. Tyler, “A neural interface provides long-term stable natural touch
perception,” Sci. Translational Med., vol. 6, no. 257, p. 257ra138.

[18] C. M. Oddo et al., “Intraneural stimulation elicits discrimination of textural
features by artificial fingertip in intact and amputee humans,” eLife, vol. 5,
2016.

[19] T. S. Davis et al., “Restoring motor control and sensory feedback in peo-
ple with upper extremity amputations using arrays of 96 microelectrodes
implanted in the median and ulnar nerves,” J. Neural Eng., vol. 13, no. 3,
2016, Art. no. 036001.

[20] P. Herberts, C. Almström, R. Kadefors, and P. Lawrence, “Hand prosthesis
control via myoelectric patterns,” Acta Orthopaedica Scandinavica J.,
vol. 44, no. 4, pp. 389–409, 1973.

[21] E. Scheme and K. Englehart, “Electromyogram pattern recognition for
control of powered upper-limb prostheses: State of the art and challenges
for clinical use,” J. Rehabil. Res. Develop., vol. 48, no. 6, pp. 643–659,
2011.

[22] F. Tenore, R. Armiger, R. Vogelstein, D. Wenstrand, S. Harshbarger, and
K. Englehart, “An embedded controller for a 7-degree of freedom pros-
thetic arm,” in Proc. IEEE Eng. Med. Biol. Soc. Conf., 2008, pp. 185–188.

[23] T. Hirata, T. Nakamura, R. Kato, S. Morishita, and H. Yokoi, “Develop-
ment of mobile controller for EMG prosthetic hand with tactile feedback,”
in Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, 2011, pp. 110–
115.

[24] H. Liu, D. Yang, L. Jiang, and S. Fan, “Development of a multi-DOF
prosthetic hand with intrinsic actuation, intuitive control and sensory feed-
back,” Ind. Robot-an Int. J., vol. 41, no. 4, pp. 381–392, 2014.

[25] S. Benatti et al., “A versatile embedded platform for EMG acquisition and
gesture recognition,” IEEE Trans. Biomed. Circuits Syst., vol. 9, no. 5,
pp. 620–630, Oct. 2015.

[26] Z. Xiaorong, H. He, and Q. Yang, “Implementing an FPGA system for
real-time intent recognition for prosthetic legs,” in Proc. Des. Autom.
Conf., 2012, pp. 169–175.

[27] A. Boschmann, A. Agne, L. Witschen, G. Thombansen, F. Kraus, and
M. Platzner, “FPGA-based acceleration of high density Myoelectric signal
processing,” in Proc. ReConFigurable Comput. FPGAs Conf., 2015.

[28] R. Merletti, A. Botter, A. Troiano, E. Merlo, and M. Minetto, “Tech-
nology and instrumentation for detection and conditioning of the surface
electromyographic signal: State of the art,” Clinical Biomechanics, vol. 24,
no. 2, pp. 122–134, 2009.

[29] K. Englehart and B. Hudgins, “A robust, real-time control scheme for
multifunction myoelectric control,” IEEE Trans. Biomed. Eng., vol. 50,
no. 7, pp. 848–854, Jul. 2003.

[30] B. Hudgins, P. Parker, and R. Scott, “A new strategy for multifunction
myoelectric control,” IEEE Trans. Biomed. Eng., vol. 40, no. 1, pp. 82–
94, Jan. 1993.

[31] A. Fougner, E. Scheme, A. Chan, K. Englehart, and Ø. Stavdahl, “Re-
solving the limb position effect in myoelectric pattern recognition,” IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 19, no. 6, pp. 644–651, Dec. 2011.

[32] G. Rasool, K. Iqbal, N. Bouaynaya, and G. White, “Real-time task dis-
crimination for myoelectric control employing task-specific muscle syner-
gies,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 24, no. 1, pp. 98–108,
Jan. 2016.

[33] E. Mastinu, M. Ortiz-catalan, and B. Håkansson, “Analog front-ends com-
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