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Abstract—Myoelectric pattern recognition (MPR) can be used
for intuitive control of virtual and robotic effectors in clinical ap-
plications such as prosthetic limbs and the treatment of phantom
limb pain. The conventional approach is to feed classifiers with
descriptive electromyographic (EMG) features that represent the
aimed movements. The complexity and consequently classification
accuracy of MPR is highly affected by the separability of such fea-
tures. In this study, classification complexity estimating algorithms
were investigated as a potential tool to estimate MPR performance.
An early prediction of MPR accuracy could inform the user
of faulty data acquisition, as well as suggest the repetition or
elimination of detrimental movements in the repository of classes.
Two such algorithms, Nearest Neighbor Separability (NNS) and
Separability Index (SI), were found to be highly correlated with
classification accuracy in three commonly used classifiers for
MPR (Linear Discriminant Analysis, Multi-Layer Perceptron,
and Support Vector Machine). These Classification Complexity
Estimating Algorithms (CCEAs) were implemented in the open
source software BioPatRec and are available freely online. This
work deepens the understanding of the complexity of MPR for
the prediction of motor volition.

I. INTRODUCTION

Myoelectric Pattern Recognition (MPR) has been shown to
have great potential as part of the control strategy for a number
of clinical applications, such as upper-limb prostheses control
[1], phantom limb pain treatment [2] and rehabilitation after
stroke [3]. Electromyography (EMG) is commonly acquired
using surface electrodes (SEs) that are sensitive to changes
in environmental conditions and motion artifacts [4], which
makes frequent calibration or training of the applied pattern
recognition algorithm (PRA) necessary. In order to acquire the
data needed for such calibration or training, EMG is recorded
while the patient performs muscle contractions relevant to
the desired movements. Such recordings might be affected
by errors due to the surface electrodes instability but also by
human factors.
Reaz et al. suggested the analysis of important EMG attributes,
such as the signal to noise ratio, in order to enable high
MPR accuracy [5]. However, analyzing data based on these

attributes requires experience and time. The literature on auto-
mated data analysis methods is limited despite the well-known
consequences of using low quality recordings.
Apart from a few exceptions most studies on MPR use features
that are extracted from raw EMG [6]. PRAs classification
accuracy is highly dependent on the feature sets used as input,
and therefore studies have been conducted on the performance
of a variety of EMG features, as well as on the selection of
such features [7], [8]. Liu et al. applied two feature selecting
algorithms, Minimum Redundancy and Maximum Relevance
(mRMR) and Markov Random Fields (MRF), to an electrode
array setup [9]. The Kullback-Leibler Divergence was used
in mRMR to rate relevance and redundancy of features and
channels, which were ranked and selected into sets according
to these ratings [10]. MRF was employed similarly to mRMR,
but the features and channels were rated based on inter and
intra class scatters, as well as total data scatter [11]. Bunderson
et al. defined three data quality indices, namely Repeatability
Index (RI), Mean Semi-principal Axis (MSA) and Separability
Index (SI). These indices were used to rate the subjects ability
to increase data quality when EMG was recorded repeatedly
over several days [12]. Even though none of the studies above
aimed to estimate classification complexity, they suggested
useful ways to draw information from EMG when predicting
classification accuracy.
Studies on Classification Complexity Estimates (CCEs) are
more common outside the MPR field. Two nonparametric
multiresolution complexity measures, Nearest Neighbor Sepa-
rability (NNS) and Purity, were defined by Singh in 2003 [13].
These CCEs showed promising results but were not evaluated
using EMG. Singh compared his results with a number of
statistical similarity measures which were also potentially ade-
quate CCEs. Among them were Kullback-Leibler Divergence,
Bhattacharyya distance [14] and Mahalanobis distance [15]. In
the present study these algorithms were used to describe the
complexity of MPR to decode motor volition.
The aforementioned Classification Complexity Estimating Al-
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gorithms (CCEAs) were implemented in BioPatRec, which is
an open source tool for the development and benchmarking
of algorithms for advanced bioelectric control [16]. BioPatRec
enables recording, preprocessing, feature extraction, pattern
recognition and real-time control of artificial limbs using
bioelectric signals. In the work presented here we evaluated
the outcome of CCEAs and compared it with the accuracy
of a number of classifiers. The resulted correlations provided
evidence of CCEAs suitability to inform on MPR complexity.
All code and data used in this study is available online [17].

II. METHODS

A. Data Set

The data set used in this study is included in the BioPa-
tRec data repository and is available online [17]. EMG was
recorded in 20 subjects who performed 11 movements (Hand
open/close, wrist flexion/extension, pro/supination, side grip,
fine grip, agree or thumb up, pointer or index extension and
rest) [16]. Disposable Ag/AgCl electrodes (� = 1 cm) were
place over the skin in bipolar configurations with 2 cm inter-
electrode distance. The first channel was placed along the
extensor carpi ulnaris mucle, and the rest (three) were equally
spread around the most proximal third of the forearm. The
more proximal electrode of every bi-pole was connected to the
positive terminal of the amplifier.

B. Recording and Pre-Processing

The subjects were requested to perform each movement 3
times and rest in between. The movement was held during 3
seconds (contraction time) and the resting time was 3 seconds.
To avoid inactivity periods being considered as movement
related information due to delay between request and reaction,
only 70 % of the contraction time was used. This percentage of
the contraction time has been found to exclude inactive periods
while keeping the dynamic portion of the contraction [16].
Sliding time windows of 200 ms with a 50 ms increment were
used to extract a variety of signal features. The feature vectors
were randomly distributed into sets for training (40%), valida-
tion (20%) and testing (40%) before training the classifiers. No
data from the testing set was used during training and validation
of the classifier.

C. Classification Complexity Estimating Algorithms

The CCEAs were designed to accept different numbers of
channels and features, which allows for the estimation of
classification complexity for individual and sets of features.

1) Separability Index: Separability Index (SI) for one class
is defined as half the Mahalanobis distances (in features space)
between the class and the center (mean of all dimensions) of
its nearest class [12]. The distance in a two dimensional feature
space is illustrated in Fig. 1 A.

The SI for a complete data set is computed by the average
over all classes. See equation 1.

Fig. 1. Inset A shows the distance between the center points (mean of both
dimensions) of two classes in a two dimensional feature space. The ellipses are
constructed to represent the covariance of the classes. When the Separability
Index is extracted, the distance is weighted by the covariance of the classes
being compared. The bigger the weighted distance, the more separable the
classes [12]. Inset B shows the six Nearest Neighbors for the target point
marked by the red circle. By evaluating the dominance of Nearest Neighbors
from the same class as the target point, an estimation of class separability can
be established using all points in a data set as targets. Higher dominance equals
higher separability [13].

SI =
1

c

c∑
i=1

(
min

j=1,...,i−1,i+1,...,c

1

2
×

×
√
(µi − µj)TS

−1
i (µi − µj)

) (1)

Where c is the number of classes, µi and µj are vectors of
mean values, one for every dimension, and Si is the covariance
matrix of for the class i.
However, the Mahalanobis distance does not take the variance
of the nearest class into account [15]. In order to investigate
if this was limiting the algorithm, a list of commonly used
statistical similarity measures was implemented as distance
definition for SI. Their names and equations for multivariate
normal distributions are listed below, starting with the original:

• Mahalanobis distance [15]

DM =

√
(µ1 − µ2)TS

−1
1 (µ1 − µ2) (2)

• Bhattacharyyas distance [14]

DB =
1

8
(µ1 − µ2)

TS−1(µ1 − µ2)+

+
1

2
ln

(
detS√

detS1detS2

) (3)

• Kullback-Leibler Divergence [14]

DKL =
1

2

(
tr(S−1

1 S2) + (µ1 − µ2)
TS−1

1 (µ1 − µ2)−

− k + ln

(
detS1

detS2

))
(4)

• Mahalanobis distance modified to take both covariance
matrices into account:

DMM =
√
(µ1 − µ2)TS−1(µ1 − µ2) (5)
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By this definition SI is related to the overlap shown
in Fig. 1 A. Note the similarities with equation 3. The
first term is completely included while the second is
left out. The second term compares the shapes of the
distributions. This is relevant for similarity measures but
not for separability. E.g. if µ1 = µ2, the second term
could still give a high value but class separation would
be impossible. This distance definition will be referred to
as Modified Mahalanobis.

For all equations µ1 and µ2 are vectors of mean values, one
for every dimension, and

S =
S1 + S2

2
(6)

where S1 and S2 are covariance matrices. Subscript 1 and 2
labels the two classes being compared.

2) Nearest Neighbor Separability: Nearest Neighbor Sepa-
rability (NNS) measures how well the class of a data set is rep-
resented among their nearest neighbors (NNs) in feature space
[13]. Fig. 1 B show the six NNs of a target member in a two
dimensional feature space. Proportions of NNs from the same
class as the target were calculated. The contribution of each
NN was weighted differently depending on its proximity to the
target point by calculating the average of the aforementioned
proportions for all numbers of NNs 1,2,...,k, where k is the
number of NNs taken into account. Equation 7 shows this step
for the target member in Fig. 1 B.(

1

1
+

2

2
+

2

3
+

2

4
+

3

5
+

3

6

)/
6 = 0.71 (7)

The final result was the average over all members. In the
original algorithm this was repeated for a set of different
resolutions [13]. In this study only the resolution 1 was used,
e.i. feature space was not divided into hyper cuboids.

D. Features

The following features were used in this study. In time
domain; mean absolute value (tmabs), standard deviation (tstd),
variance (tvar), waveform length (twl), RMS (trms), zero-
crossing (tzc), slope changes (diff) (tslpch), power (tpwr),
difference abs. mean (tdam), max fractal length (tmfl), fractal
dimension Higuchi (tfdh) fractal dimension (tfd), cardinality
(tcard) and rough entropy (tren). In frequency domain; wave-
form length (fwl), mean (fmn) and median (fmd).

E. Classifiers

The classifiers used in this study were LDA, Multi-Layer
Perceptron (MLP), Support Vector Machine (SVM)(quadratic),
and Regulatory Feedback Networks (RFN). These classifiers
were used as implemented in BioPatRec [16] (code available
online [17]), where LDA and SVM were implemented using
pre-defined functions in Matlab.

F. Evaluation and Comparison

The data set was used in two ways. First, CCEs using individ-
ual features were compared with the resulting accuracy using
only that feature. This served not only to obtain a wide range
of CCEs, but also to rate the features adequacy as classifier
inputs. Both accuracy and CCE were calculated for all classes
and all subjects. Results given by use of individual classes
are referred as individual results. Rating classes individually
provided a wide CCE range as well as information about the
EMG acquisition, i.e low separability for one class means high
influence of error in that class. Averages over all classes were
included in the result and referred as average results. Sets of
2-4 features were selected by ranking the results given by SI
(Modified Mahalanobis) and NNS (k = 20) for all possible
feature combinations including the feature with the highest
CCE from individual feature evaluations, further referred to
as best sets. Ortiz-Catalan proposed sets of 2-4 features found
to be highly performing by a genetic algorithm [7]. These sets
containing two and three features, and the Hudgins set, which
is four out of five features introduced by Hudgins in [18], were
used as benchmarking reference sets:

• Ref 2: tstd, trms [7]
• Ref 3: tstd, fwl, fmd [7]
• Ref 4: tmabs, twl, tslpch, tzc [18]

The best and reference sets of equal number of features were
compared using different classifiers. Statistical significance
was calculated with Wilcoxon signed-rank test (p <= 0.05).
Since there was no clear linearity in the dependencies between
accuracies and any CCEA, correlations were calculated using
Spearmans rho.

III. RESULTS

A. Separability Index

Correlations between SI and LDA accuracy when using the
different statistical similarity measures as distance definitions
are presented in Table I. Because the Modified Mahalanobis had
higher correlation, and a more cohesive distribution with less
outliers (see Fig. 2), it was selected as the distance definition
for SI in following experiments.

TABLE I
SEPARABILITY INDEX CORRELATION WITH ACCURACY

Individual Results Average Results
Bhattacharyyas 0.79 0.83
Kullback-Leibler 0.78 0.69
Mahalanobis 0.85 0.78
Mahalanobis Modified 0.85 0.93

Correlations, using Spearmans rho, between accuracy and SI when using
individual features classified by LDA. The statistical similarity measures
in column one are used as distance definitions. Under individual results,
correlations were calculated using values for every class while average over
classes were used under column three.

In Fig. 3 accuracies using different classifiers are plotted
against SI. All data corresponds to individual features. SVM
and RFN results are more scattered compared with LDA and
MLP results. They also have a considerable number of indi-
vidual results close to zero accuracy, which seem uncorrelated
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with SI. The average results however, show high correlation
between SI and accuracy for all classifiers.

Fig. 2. Plots of accuracy against SI using individual features fed separately to
LDA. The statistical similarity measure given in the plot is used as distance
definitions. Accuracy and SI are average result over all classes.

Fig. 3. Plots of accuracy against SI using individual features fed separately
to the different classifiers. The top four show results that are average over all
classes while the bottom four show result for classes individually. Correlation
was calculated using Spearmans rho.

B. Nearest Neighbor Separability

The consequence of increasing the parameter k is that the
algorithm becomes more sensitive to overlapping classes but it
takes more iterations to compute. See how higher k increases
correlation with accuracy along with the relative computation
time in Table II. SI with Modified Mahalanobis uses 5.2 % of
the computation time used by NNS with k = 20.

Plots of NNS results for different classifiers are shown
in Fig. 4. Again individual results for SVM and RFN are

TABLE II
NEAREST NEIGHBOR SEPARABILITY CORRELATION WITH ACCURACY AND

COMPUTATION TIME

Individual Results Average Results Relative Time
k = 20 0.84 0.87 1
k = 40 0.86 0.88 1.37
k = 60 0.88 0.90 1.75
k = 80 0.89 0.91 2.14

Correlations, using Spearmans rho, between accuracy and NNS when using
individual features fed separately to LDA and the values of k in the first
column. Correlations under individual result are calculated using values for
every class while average result is used for column three. Forth column shows
the computation time relative to the fastest, k = 20.

widely scattered, but high correlation can still be found for
all classifiers looking at the average result. However, NNS is
spreading more for higher accuracies. This is especially clear
in the average results for LDA where the plot is sun fan shape
above 60 % accuracy and clustered around a line otherwise.

Fig. 4. Plots of accuracy against NNS using individual features fed separately
to the different classifiers. The top four shows results that are average over all
classes while the bottom four shows result for classes individually. Correlation
was calculated using Spearmans rho.

C. Feature Sets

The classification accuracy from all classifiers when fed by
the best and reference sets was used as evaluation method for
performance. These results are illustrated in Fig. 5. Statistical
significance is indicated by *. Correlation between CCEs and
accuracies from using the best and reference sets are show in
Fig. 6. Comparing Fig. 6 with Fig. 3 and 4 the results for LDA
and MLP are similar except that accuracies are generally higher
for feature sets over individual features. The SVM results are
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less scattered and neither RFN or SVM results are clustered at
zero accuracy as in Fig. 3 and 4.

Fig. 5. Accuracies using the best sets from SI and NNS compared with the
reference sets. The center line in the box is the median value, the marker is the
mean value and the top and bottom are 25th and 75th percentiles respectively.
The total data range is shown by the whiskers. Statistical significance using
significance level 5 % is marked with *.

Fig. 6. Accuracy plotted against SI (top four insets) and against NNS (bottom
four insets). The best and reference sets were used separately to extract feature
vectors for all subject. One feature vector was fed to the classifier to create
one point. Correlation was calculated using Spearmans rho.

D. Features

The rating of features and feature sets in this study has
provided information on the features general performance. Fig.
7 shows the five features with highest and lowest average
accuracy when using individual features. LDA and MLP results
are represented. The five most selected features for the best sets
are tcard, fmn, tvar, tstd and tpwr for SI and tcard, tdam, tstd,

twl and fmn for NNS. The features are ranked in the order they
are written, with the most selected feature first. It is worthy
of notice that one of the top feature, cardinality, was recently
found to be a highly performing feature in MPR [19].

Fig. 7. Ellipses representing feature scatters of Accuracy against SI plots. The
ellipses are drawn to represent the covariance matrix. The left insets show the
features with the lowest average accuracy and the right insets show the features
with the highest.

IV. DISCUSSION

A. Accuracy Prediction

This study shows that NNS and SI can provide useful
information when predicting accuracy for MLP and LDA
based on the high correlation between classification accuracies
and the CCEs, for both individual features and feature
sets. This was also supported by the statistically significant
improvement on MPR accuracy of the best sets over the
reference sets. The only exception found was the best set of
two features selected by NNS and fed to LDA which yielded
lower accuracy than the reference set. However, the fact that
these sets perform similarly is an indication that NNS provides
relevant information for the problem at hand.
The SVM accuracy had low correlation with SI and NNS,
compared to LDA and MLP, for individual features. However,
correlation improved when feature sets were used, and the
best sets are all yielded higher accuracy than the reference
sets. How relevant the CCEs are for SVM seems to change
with the number of inputs to the classifier.
All CCEAs evaluated in this study result in low correlation
with RFN accuracy. However, all the best sets from NNS
yielded significantly higher accuracy than the reference sets,
which supports the use of this method for feature selection.

B. Consistency Over Change in Number of Dimensions

Consistency of SI and NNS for MLP and LDA can be
appreciated by comparing the corresponding plots for individ-
ual features and feature sets. The clusters are forming similar
patterns even though different number of dimensions were used.
This is not true for SVM and RFN, where many of the individ-
ual results from individual features has accuracy close to zero.
This makes these plots inconsistent with the corresponding
patterns found for feature sets.
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C. Limitations and Future Challenges

The CCEAs correlate differently with different classifiers
accuracies. One reason is that neither SI or NNS describe the
limitation of LDA due to its dependency on linearly separable
classes. MLP is a nonlinear classifier and its accuracy is
consequently more accurately estimated by the two CCEAs.
Another reason is that SI assumes normality of the feature
distributions while NNS does not. On the other hand, SI is
much less computationally demanding. How PRAs and CCEAs
are combined must be considered as CCEAs are implemented
in more specific applications.
The data set for this study is limited to individual movements,
four EMG channels and only offline accuracy was considered.
To really evaluate how relevant the CCEAs are for MPR, further
tests are needed with more diverse data sets.
This study shows that the information given by CCEAs can be
used in feature selection for MPR. However, the feature sets in
this study had maximum four features and there are only four
recorded channels. The low number of dimensions makes brute-
force search possible but the complexity will increase rapidly
as the number of channels, features and/or classes increase.
MFL and mRMR are two feature selection strategies already
used for MPR, and are both examples of what is likely to be
an important part of MPR in the future. The CCEAs in this
study will have to be used strategically in a similar way to be
efficient for feature selection.
Estimating accuracy without implementing a classifier allows
early evaluation of recorded data. Classes with low separability
can be recorded and evaluated again until desired separability
can be confirmed. More research needs to be done on how to
interpret CCEs when they are used for MPR.

V. CONCLUSIONS

Two Classification Complexity Estimating Algorithms,
namely Separability Index and Nearest Neighbor Separability,
were found adequate for MLP and LDA based on their high
correlation with classification accuracy for both individual
features and feature sets. High correlation with SVM accuracy
was also observed for feature sets.
The two CCEAs were also found useful for EMG feature
selection for all three aforementioned classifiers as feature sets
selected based on level of separability given by the CCEAs
resulted in higher or similar accuracies when compared with
reference sets.
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