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Abstract—Real-time inference of human motor volition has great 
potential for the intuitive control of robotic devices. Towards this 
end, myoelectric pattern recognition (MPR) has shown promise in 
the control of prosthetic limbs. Interfering noise and susceptibility 
to motion artifacts have hindered the use of MPR outside 
controlled environments, and thus represent an obstacle for 
clinical use. Advanced signal processing techniques have been 
previously proposed to improve the robustness of MPR systems. 
However, the investigation of such techniques have been limited to 
offline implementations with long time windows, which makes 
real-time use unattainable. In this work, we present a novel 
algorithm using discrete and stationary wavelet transforms for 
MPR that can be executed in real-time. Our wavelet-based de-
noising algorithm outperformed conventional band-pass filtering 
(up to 100 Hz) and improved real-time MPR in the presence of 
motion artifacts, as measured by the Motion Test. Improved 
signal-to-noise ratio was found not to be crucial in offline MPR, as 
machine learning algorithms can integrate high but consistent 
noise as part of the signal. However, varying interference is 
expected to occur in real life where signal processing algorithms, 
as the one introduced in this study, would potentially have a 
positive impact. Further implementation of these algorithms in a 
prosthetic embedded system is required to validate their feasibility 
and usability during activities of the daily living. 
 

Index Terms—Artificial neural networks (ANN), prosthetic 
limbs, myoelectric pattern recognition, discrete wavelet 
transforms, signal denoising. 
 

I. INTRODUCTION 
estoring the pre-amputation functional state after limb loss 
using artificial devices is a challenging task. In recent 

decades, improvements in fields pertaining to prosthetic 
technology have been reported [1]. Commercially available 
prosthetic hardware combined with digital state-of-the-art 
technology has the potential to profoundly improve the 
functionality of limb prostheses. Electromyography (EMG) 
could hereby provide an intuitive human-machine interface for 
prosthetic control.  

State-of-the-art prostheses utilize a couple of EMG sites and 
finite-state machines to control many functions [2]. The serial 
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manner of this type of prosthetic control is counterintuitive and 
does not allow simultaneous actuation of multiple degrees of 
freedom (DoF). Limb prostheses under this control scheme are 
far from resembling the functionality of their biological 
counterpart. 

Myoelectric prostheses use and abandonment is affected by 
a wide range of factors such as comfort, durability, function, 
control, and appearance. Surveys report higher rejection rates 
for electric devices compared to body-powered prostheses [3]. 
Poor controllability is believed to be a major reason for the low 
acceptance rate of myoelectric prostheses among upper-limb 
amputees [4]. 

Myoelectric pattern recognition (MPR) has shown promising 
results over the last decades as a solution for dexterous 
multifunction prosthetic control. Approaches in pattern 
recognition commonly include fundamental processing stages, 
which are depicted in Fig. 2. However, the enthusiasm 
emerging within the academic community is met by poor 
clinical and commercial impact [4, 1]. Currently there is only 
one commercially available MPR system from which clinical 
results are to be reported (Coapt, USA). 

The MPR approach for prosthetic control has several 
shortcomings that could explain why its acceptance is lower 
than the high classification accuracies obtained in laboratory 
evaluations would suggest. A critical challenge is to maintain 
long-term stability and robustness in the decoding of motor 
volition, for which a clean and consistent EMG signal seems to 
be a prerequisite.  

During surface EMG signal acquisition, various 
physiological and external background noise sources and 
artifacts interfere, e.g. electrode shifts or liftoff, movement 
related artifacts, physiological noise, or external mechanical 
interferences. Most of the noise sources can be mitigated under 
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Fig. 1.  Main processing stages in MPR for myoelectric control. 
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relatively static laboratory conditions. However, in real-life 
operation, the execution of motion and its muscle contractions 
are performed under a wide variety of dynamic conditions 
within which noise or artifacts are unavoidable — conceivably 
making the signal unrecognizable for a classifier. 

Previous research on MPR has been mainly focused on 
feature extraction, classification, and post-processing 
strategies. Signal pre-processing techniques, which have a 
direct impact on MPR accuracy, have been scarcely 
investigated despite indications of potential improvements by 
using algorithms such as wavelet de-noising [5, 6, 7]. To our 
best knowledge, no scientific investigation dealing with 
stationary wavelet transform-based de-noising in real-time of 
EMG signals for MPR has been published. Most of the previous 
work on similar algorithms is not suitable for real-time 
processing due the use of long time windows [8] or high 
sampling rates [9]. None of the recently proposed approaches 
in signal pre-processing such as class-wise principle component 
analysis [10], independent component analysis [11], signal 
whitening [12], advanced autoregressive processing [13], or 
wiener filtering [14, 15] have been evaluated in real-time, 
which is a requirement for further clinical translation. 

In the present study, we employed discrete and stationary 
wavelet transform-based de-noising techniques to improve the 
quality of the EMG signals prior to real-time MPR for the 
control of upper-limb prostheses. This approach was motivated 
by the ability of wavelet-based de-noising as a shape-
conserving, noise filtering technique [7].  

Firstly, we systematically evaluated the capability of 
wavelet-based de-noising to reduce unavoidable random 
background noise, which cannot be removed by conventional 
band-pass filtering. Secondly, we present a novel algorithm to 
mitigate the impact of motion artifacts and mechanical 
disturbances on MPR accuracy. High-pass filtering at 10 Hz or 
20 Hz has been proposed as the most immediate solution, due 
to the electric characteristics of motion related artifacts (mainly 
located in the lower frequencies) [16]. However, we found that 
conventional high-pass filtering with cutoff frequency as high 
as 100 Hz, is not reasonably effective against strong motion 
related artifacts and extrinsic mechanical disturbances (i.e., 
rapid limb movements), arguably because these eminently 
overlap the EMG frequency spectrum. 

All signal processing algorithms in this work were subject to 
the constraint of real-time computation to guarantee their 
usability in MPR-based prosthetic systems. This posed the 
challenges of maximizing functionality and performance, while 
keeping the complexity and the response time at a minimum. 
Furthermore, the classification ability must not deteriorate from 
signal treatment when favorable acquisition conditions are 
present. Here we showed that wavelet-based de-noising can be 
performed within real-time constraints, and it does not decrease 
system performance under favorable conditions.  

This study was approved by the Regional Ethics Committee 
in Gothenburg, Sweden.   

II. BACKGROUND 

A. Wavelet transform 
The wavelet transform (WT) decomposes a signal from the 
time-domain into multi-resolution components, called the time-
frequency representation. WT has been growing in popularity 
in EMG analysis as it enables a high time-resolution at 
ascending frequencies combined with high frequency-
resolution in the lower frequency components. WT can be 
categorized into discrete and continuous forms. The discrete 
wavelet transform (DWT) is most commonly used in EMG 
analysis, as the processing time is low and its implementation 
conveniently employs the fast wavelet transform (FWT) by 
using filter banks (see Fig. 2a) [17]. The DWT of an input signal 
𝑥𝑥(𝑡𝑡) and a given discrete wavelet 𝜓𝜓𝑗𝑗,𝑘𝑘 can be written as: 
 

𝐶𝐶𝑗𝑗,𝑘𝑘 = ∑ 𝑥𝑥(𝑡𝑡)𝑡𝑡∈ℤ 𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡)   with   𝜓𝜓𝑗𝑗,𝑘𝑘 = 1
�2−𝑗𝑗

𝜓𝜓(2𝑗𝑗𝑡𝑡 − 𝑘𝑘),  

 
where 𝐶𝐶𝑗𝑗,𝑘𝑘 are the wavelet coefficients with a discrete mother 
wavelet  𝜓𝜓 dyadic scaled by 2−𝑗𝑗 and translated by 𝑘𝑘 ⋅ 2−𝑗𝑗 with 
𝑗𝑗 ∈  ℕ and 𝑘𝑘 ∈  ℤ. WT can hence be seen as a projection onto a 
set of child wavelets 𝜓𝜓𝑗𝑗,𝑘𝑘 which form an orthonormal system in 
the space of 𝐿𝐿2(ℝ). The original signal 𝑥𝑥(𝑡𝑡) is hereby 
decomposed into wavelet coefficients of each level j, which 
corresponds to denoted frequency bands (see Fig. 2b). The 
resulting wavelet coefficients are true components of the 
original signal 𝑥𝑥(𝑡𝑡) without any loss of data, which allows for 
a perfect reconstruction, namely the Inverse Discrete Wavelet 
Transform (IDWT). 
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Fig. 2 (a) DWT filter bank scheme of a third-level DWT decomposition. The 
original signal (S) passes a series of complementary high- and low-pass filters 
(h1[n] and g1[n], respectively) which coefficients are calculated from a chosen 
wavelet function 𝜓𝜓(𝑡𝑡) and its corresponding scaling function 𝜙𝜙(𝑡𝑡). The signal 
(S) emerges as two signals: Approximation (A) and detail coefficients (D), 
which are subsequently down-sampled by a factor of two. The decomposition 
is repeated, using the A array as an input for the following filters. This 
procedure is repeated until the desired level of depth J, resulting in the final 
approximation (AJ) and all level details (D1-DJ). (b) Coefficient arrays and 
corresponding frequency sub-bands with f0. equal to the Nyquist frequency. 
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B. Stationary wavelet transform (SWT) 
Critical sub-sampling makes DWT the most efficiently 
computed wavelet transform. However, DWT suffers from 
variance to time shifts. This might be without consequence due 
to the perfect reconstruction ability of inverse DWT, but it 
becomes critical when translation-invariant signal analysis is 
performed in the wavelet coefficient subspace.  
SWT achieves translation-invariance by using a redundant 
wavelet representation as the signal sub-sampling in the DWT 
is removed (see Fig. 3). Instead, the filter coefficients are up-
sampled by a factor of 2j in the j-th level of the algorithm. The 
basic idea is to average slightly different DWT, so called ε-
decimated DWT (for a rigorous proof, refer to [18]).  

C. Wavelet-based de-noising 
The objective of wavelet-based de-noising is to recover the 
signal of interest from a noisy composition. In MPR, the task 
concerns finding coefficients in the wavelet transformed 
subspace that contain deterministic, distinguishable 
information. In wavelet-based de-noising, undesired corrupted 
coefficients resulting from random noise can be modified prior 
to the reconstruction process to produce a cleaner signal. This 
approach involves three main steps (see Fig. 5): (1) Wavelet 
decomposition using DWT or SWT of specified level J; (2) 
Coefficient thresholding based on level-wise noise level 
estimation; and (3) Reconstruction of the signal via inverse 
DWT/SWT from the modified coefficients. To achieve and 
optimize the de-noising procedure, several points need to be 
addressed, such as selection of a suitable wavelet function, type, 

and depth of the decomposition, noise level estimation, and 
coefficient thresholding (see Table 1). 

  
D. Wavelet Wiener filtering 
Wiener filtering needs an a priori estimate of the desired noise-
free signal for calibration. Wiener filtering assumes the signal 
and the artifact to be stationary, linear, stochastic processes with 
known spectral characteristics. A linear time invariant Fourier 
filter is therefore used in the frequency domain, where the 
original Fourier coefficients are rescaled according to the ratio 
between the desired and actual signal spectrum. Wiener 
filtering can also be applied in the wavelet domain, namely 
wavelet Wiener filtering (WWF) [19], which is illustrated in 
Fig.  4. Employment of the Wiener correction factor has been 
explored for ECG signal filtering [20], but no available 
literature was found discussing wavelet Wiener filtering for 
EMG signal processing. 
WWF hereby defines the Wiener Correction Factor (WCF) 
𝑔𝑔�𝑚𝑚(𝑛𝑛) as: 
 

𝑔𝑔�𝑚𝑚(𝑛𝑛) = 𝑢𝑢�𝑚𝑚2 (𝑛𝑛)
𝑢𝑢�𝑚𝑚2 (𝑛𝑛)+𝜎𝜎�𝑚𝑚2 (𝑛𝑛)

, 
 

where 𝑢𝑢�𝑚𝑚 equals the squared wavelet coefficients obtained 
from the estimate 𝑠𝑠(𝑛𝑛) and 𝜎𝜎�𝑚𝑚(𝑛𝑛) is the variance of the noise 
coefficients in the j-th decomposition level. The modified 
wavelet coefficients 𝑦𝑦𝜆𝜆 𝑚𝑚(𝑛𝑛) are finally obtained by: 
 

𝜆𝜆𝑦𝑦𝑚𝑚(𝑛𝑛) = 𝑦𝑦𝑚𝑚(𝑛𝑛) ⋅ 𝑔𝑔�𝑚𝑚(𝑛𝑛) 

III. METHODOLOGY 

A. Wiener correction factor 
Sharing the same wavelet function and level depth among the 

first (SWT1) and second wavelet decomposition (SWT2) 
provides the opportunity to calculate the WCF 𝑔𝑔�𝑚𝑚(𝑛𝑛) by a 
single wavelet decomposition. For the purpose of wavelet de-
noising, we implemented WWF in this simplified form to 
enhance computational speed, which is crucial for real-time 
execution. We investigated the performance of Wiener 
corrected SWT-based de-noising with bior1.3 wavelets, 
adaptive thresholding, and minimax threshold selection. 
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Fig. 5 Basic wavelet de-noising scheme. 
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Fig. 3 SWT Filter bank scheme of a third-level DWT decomposition. 

 
 
 
 
 
 
 

 

Table 1 Wavelet de-noising parameters used for evaluation. 
 

Wavelet transform DWT, SWT, SWT + WCF 

Wavelet level depth 3,4, and 5 

Noise level estimation 
(level-dependent) 

universal, GSMU, SURE, minimax, 
penalized 

Coefficient 
thresholding 

hard, soft, adaptive, improved, 
hyperbolic, non-negative Garrote 

Wavelet basis functions 

db1, db2, db3, db4, 
sym2, sym3, sym4 
coif1, coif2, coif3 
bior1.3, bior1.5, bior2.2, bior2.4, 
rbio1,3, rbio1.5, rbio2.2, rbio2.4 

 

x(n)

SWT1 ISWT1H

SWT2

SWT2

gm(n)

um(n)

ym(n) ISWT2

s(n)

  λym(n) y(n)
 

 
Fig.  4 Basic scheme of the wavelet Wiener filtering approach. 
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B. Real-time artifact reduction algorithm 
Our wavelet-based approach follows three main steps to 

detect and reduce interfering artifacts: 
 

1) Wavelet decomposition using a fourth level SWT with 
Daubechies 1 wavelets to minimize processing time. The 
time-frequency representation is used for the temporal 
detection of artifacts. SWT was preferred owing to its time-
invariant nature. 
 

2) Thresholding: We sampled EMG signals at 2000 Hz. The 
approximation level hereby corresponds to a frequency 
range between 0–62.5 Hz. The sub-band of the third detail 
coefficients represents frequencies in the range of 125–250 
Hz, and therefore contains the dominant frequency 
components of the myoelectric signal. Artifact-free EMG 
data should be represented by high values of the third detail 
coefficients and lower valued approximation coefficients, 
which motivated our definition of an artifact detection 
threshold 𝜃𝜃 as: 
 

𝜃𝜃𝑘𝑘 = median(|𝐷𝐷3|) + 𝑘𝑘 ⋅ 𝜎𝜎(𝐷𝐷3), 
 

where 𝐷𝐷3 are all detailed coefficients in the third level, 𝜎𝜎 is 
the standard deviation of these coefficients, and 𝑘𝑘 is a 
parameter which allows level dependent threshold 
adjustment. All approximation coefficients exceeding 𝜃𝜃 
are considered to be compromised by an artifact. Hard 
thresholding is subsequently applied: 
 

𝐴𝐴𝑠𝑠 = � 0,        if 𝐴𝐴𝑠𝑠 > 𝜃𝜃1    
𝐴𝐴𝑠𝑠,      otherwise       , 

 

where 𝑠𝑠 ∈ [1,𝑁𝑁] denotes the location of the coefficients 
within the time window of sample length N. Since artifacts 
can contain frequency components higher than the 
frequencies that are represented by the approximation 
coefficients of our used fourth level decomposition, 
thresholding has consequently been extended to the detail 
coefficients at the 𝑛𝑛-th level 𝐷𝐷𝑛𝑛,𝑠𝑠: 
 

𝐷𝐷𝑛𝑛,𝑠𝑠 = �
0,            if 𝐷𝐷𝑛𝑛,𝑠𝑠 > 𝜃𝜃0 ⋁𝐴𝐴𝑠𝑠 > 𝜃𝜃1          
𝐷𝐷𝑛𝑛,𝑠𝑠,         otherwise                                  , 

 

where 𝑛𝑛 =  1,2,3 and 4 and 𝑘𝑘 was set to zero. 
 

3) Signal reconstruction of the modified coefficients. 

C. Signal acquisition, processing, classification 
A set of surface EMG recording from 10 non-amputee 

subjects performing 10 hand and wrist motions was used for 
offline evaluation of wavelet de-noising, as well as for 
assessing the performance of the artifact reduction algorithm 
here proposed. This data set of myoelectric signals is provided 
in the BioPatRec open source platform under the label 
“10mov8ch-Untargeted-Forearm” [21]. The EMG signals were 
recorded from four bipolar electrodes (Ag/AgCl, 1 cm 
diameter, and 2 cm inter-electrode distance) equally spaced 
around the most proximal third of the forearm, and sampled at 
2 kHz with 14-bits in resolution. Recordings were taken on the 
left arm and all subjects were right-handed, their average age 
was 33.9±13 years old, and 60% were males. 

We evaluated the real-time performance of the motion 
reduction algorithm in six able-bodied subjects. Subjects used 
their left arm, five were right-handed, and five were males. Six 
motion classes were investigated (hand open/close, wrist 
flexion and extension, and forearm pronation and supination) 
by using four pairs of disposable electrodes in the same way as 
the offline evaluation. The subjects were visually guided by the 
BioPatRec recording graphical user interface [21]. Training 
sessions contained three repetitions of each motion, each lasting 
for 3 s and relaxing/resting periods of the same length between 
each contraction. The intensity of the contractions was 
requested to be around 70–80% of the maximum voluntary 
contraction, which was visually verified by the overall EMG 
magnitude during muscular contractions. Signals were sampled 
at 1 kHz with 24-bits in resolution using an in-house designed 
EMG acquisition system [22]. 

The raw EMG signals of each recorded motion were 
symmetrically trimmed to 70% of the contraction time and the 
time window size was set to 256 ms with a time increment of 
64 ms. The four most commonly used time-domain features in 
MPR (Mean Absolute Value [MAV], Wave-Length [WL], 
Zero-Crossing [ZC], and Slope-Sign-Changes [SSC]) were 
extracted from the resulting time windows to form the feature 
vectors, which were then fed to the classifiers. 

We employed a Linear Discriminant Analysis (LDA) 
classifier (MATLAB ® Statistics and Machine Learning 
Toolbox, Mathworks, Inc., USA) and a Multi-Layer Perceptron 
(MLP) classifier (NetLab Toolbox Version 3.3.1, [23]). The 
NetLab MLP uses logistic sigmoid activation functions for the 
hidden layer. The output layer uses a softmax function, which 
has shown the best results for single class activation. The 
maximum number of iterations in the learning procedure was 
set to 400. 

All algorithms were implemented in the modular open source 
platform BioPatRec [24]. Segment-wise processing time of all 
algorithms was measured to assess their real-time feasibility. 
Offline and real-time data processing was performed in 
MATLAB 2015b (Mathworks, Inc., USA) using an i7-4500 
CPU @1.8 GHz. 

 

 
 

Fig. 6 Original EMG signal (red) and noisy version (blue), which was 
calculated by using uniformly distributed random numbers with zero mean and 
standard deviation (SD) of 10% of the largest SD, which was found during a 
single contraction of all EMG signals obtained for one subject. Using this 
approach, the signal power of the additive noise was equal throughout all 
movements and channels. 
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D. Offline evaluation criteria 
We chose Mean Squared Error (MSE), Signal-to-Noise Ratio 
(SNR), and classification accuracy (Acc) as performance 
criteria to evaluate the signal treatment regimes offline. 

Ω 

1) MSE was defined as:  
 

MSE = ∑ �𝑠𝑠noise,f−𝑠𝑠raw,f�
2

𝑖𝑖
𝑁𝑁
𝑖𝑖=1 , 

 

where 𝑁𝑁 is the total number of the analyzed overlapping 
time windows, 𝑠𝑠raw    represents the original acquired EMG 
signal samples while 𝑠𝑠noise  represents its artificially 
created noisy samples. The index f indicates that the 
samples have been filtered/modified. The larger the MSE, 
the greater the difference between the samples of the de-
noised and the true signals. 

 

2) MSE by itself was not considered sufficient to estimate the 
de-noising performance as it does not reflect the remaining 
information content of the signal after filtering has been 
applied. This motivates to define a SNR index:   
 

SNR = 10 log �
𝑃𝑃𝑠𝑠noise,f
𝑃𝑃𝑒𝑒noise

� dB. 
 

The noise power 𝑃𝑃𝑒𝑒noise  is based on the noise estimation 
function 𝑒𝑒noise  = 𝑠𝑠noise,f  − 𝑠𝑠raw,f  which represents the 
remaining noise after signal de-noising or artifact 
reduction have been performed. 

 

3) Classification accuracy was used to assess the de-noising 
performance for the classification task. Acc represents the 
averaged accuracy rates over all motions and all EMG data 
sets: 
 

Acc = absolutely correct class predictions
total class predictions

⋅ 100%, 
 

Improved accuracy is defined as: 
 

Accimproved = Accde-noised − Accno de-noising. 
 

Using wavelet de-noising as an estimation tool to generate an 
improved EMG signal in terms of both class separability and 
robustness, we desire small MSE values while having a high 
SNR. In order to find the best set of parameters for wavelet de-
noising and to assess the performance of the artifact reduction 
algorithm, signals were compromised with either random noise 
(see Fig. 8) or insertion of previously recorded artifacts (see 
Fig. 11).  

These were inserted into the untreated original EMG signals, 
which served as reference datasets in accordance to the 
following settings: 
1) NoiseAllSets: Noise/artifacts were added throughout the 

reference EMG signals before window segmenting is 
applied and can therefore be found in all time windows. 

2) NoiseTestingSet: Noise/artifacts are not present in the 
training set, but appear in the testing set to assess the 
performance of the classifier with unseen data. This means 
that untampered data was used during learning, as would 
normally be the case, while noise and artifacts appear 
during testing, resembling the operational situation. This 
method allowed us to systematically evaluate the 

robustness of the classification under changing noise levels 
or novel artifacts in real-time. 

E. Wavelet de-noising parameter optimization  
Firstly, the optimal wavelet decomposition level was 

selected. Phinyomark et al. investigated the level depth with 
different wavelet functions and found that the third and fourth 
levels at 2000 Hz sampling frequency, resulting in 
approximation coefficients at the 0-62.5 Hz and 0-31.25 Hz 
frequency bands respectively, are better than other levels. They 
also showed that the overall trend is not affected by the choice 
of the wavelet function [7]. Using subject-specific wavelet 
functions for de-noising has been investigated, but the results 
showed that more work on a generic wavelet tuned to sEMG 
needs to be performed to be useful in a real-life setting [25]. We 
found that fifth level decompositions perform similar compared 
to fourth level decompositions. Fourth level de-noising 
performed even better in regards of the defined SNR criterion; 
this holds true for both SWT and DWT de-noising. These 
results support that fourth level decompositions are sufficient, 
as no improvement of a fifth level decomposition was observed. 
As a result, fourth level decompositions were used for further 
evaluation.  

Secondly, coefficient shrinking methods were evaluated for 
DWT- and SWT-based de-noising. In addition to the traditional 
and commonly used hard and soft coefficient shrinkage, four 
modified thresholding functions were evaluated. We found that 
adaptive shrinkage gave the best results for both DWT and 
SWT de-noising. The results are in accordance with the studies 
by Phinyomark et al. [7], which showed that adaptive is the best 
wavelet shrinkage method in both the de-noising and the pattern 
recognition points of view. 

Selecting the optimal threshold value is another crucial part 
of wavelet de-noising. Therefore, six different threshold 
selection rules were evaluated.  

Finally, wavelet basis functions with various orders from five 
different families were employed: Daubechies (db), Symlets 
(sym), Coiflets (coif), BiorSplines (bior) and ReverseBior 
(rbio). Error measures and accuracies from 18 wavelet 
functions were evaluated (see Table 1). The simplest wavelet 
db1 outperforms all other wavelets in both MSE and SNR. In 

 

 
 
 
 

Fig. 7 Recorded artifacts of different length [ms], elicited by rapid limb 
movements, electrode tapping or cable movement. Amplitudes are normalized 
between -1 and 1. The NoiseAllSet contained artifacts with an average time gap 
of 1s throughout the entire EMG recordings, whereas the NoiseTestingSet setting 
contained artifacts with an average time gap of 200ms within the testing data 
set. Magnitudes of the inserted artifacts were randomly set within a range 
between one to tour times of the overall MAV of the trimmed EMG recording. 
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case of prosthetic control, the short filter length of the db1 
wavelet is additionally desirable, as it reduces computation 
time.  

F. Real-time evaluation with Motion Test 
The Motion Test was used to evaluate the wavelet based 

artifact reduction algorithm in a real-time environment. This 
test was originally introduced by Kuiken et al. [26] and was 
used in this study as implemented in BioPatRec [24]. As it is 
impractical to create an equal appearance of artifacts in 
different real-time sessions for a single subject, we individually 
collected the three different types of artifacts (see  

Fig. 7) and fused these during the motion test with the real-time 
EMG signal in a pseudo-random manner to mimic an 
unpredictable occurrence. This was done in order to ensure 
equivalent appearance of the artifacts during motion test trials. 
The individually extracted artifacts were continually introduced 
in randomly selected channels (1 up to 4) with an average time 
gap of 0.5 s and a randomly determined magnitude of up to 100 
μV, which corresponded to 78–213% of the maximum 
amplitude of the subject’s EMG signals.  

This approach was necessary to obtain reliable results for a 
paired comparison between trials of the Motion Test. The 
subjects were requested to perform each motion class randomly 
by following instructions displayed by BioPatRec. Each subject 
performed two consecutive trials of the Motion Test in which 
each movement was performed three times with a time out of 
10 seconds using MLP for classification. 

Motion Tests were performed with conventional high-pass 
filtering of 20 Hz. The proposed wavelet artifact reduction 
algorithm was utilized in one of them to compared it with high-
pass filtering only. We focused on two metrics of the Motion 
Test: completion time and real-time accuracy. Completion time 
is defined as the time from the first prediction other than rest to 
the 20th correct classification. The fastest possible completion 
time of any motion was 4 s, corresponding to 20 consecutive 
correct predictions with new predictions occurring every 200 
ms. The median values for each motion (three repetitions) were 
selected for each participant and averaged across the six 
participants. Real-time accuracy is the percentage of correct 
predictions over the total number of predictions during the 
completion time. A paired t-test was used to evaluate 
statistically significant differences at p < .05.  

IV. RESULTS AND DISCUSSION 

A. Wavelet de-noising parameter optimization 
We found that simple wavelets with short filter length provide 
better results than wavelets of higher orders. Hence, it is 
advisable to use wavelets of a low order for wavelet de-noising. 
Accuracies by LDA and MLP classification provided 
corroborated this conclusion. Bior1.3 and bior1.5 performed 
best in the NoiseTestingSet setting among all the wavelets 
employed, outperforming db1, which had shown the best error 
values. An evaluation of 53 wavelet functions by Phinyomark 
et al. [7] confirms the tendencies observed in the MSE and SNR 
results.  Minimax and universal selection rules provided 
promising results in terms of MSE and SNR. We could see 

different tendencies between the original EMG, the NoiseAllSets 
and the NoiseTestingSet setting. Moreover, the results based on 
MLP and LDA classification, respectively, vary widely from 
one another, which makes it difficult to give a recommendation 
for optimal de-noising performance. 

B. Usage of Wavelet wiener filtering 
Fig. 8a illustrates the EMG de-noised signals with and without 
usage of the WCF. It can be seen that the WCF recovers signal 
components which would have been discarded during classical 
wavelet thresholding. At the same time, using WCF yields a 
higher MSE value, but is accompanied by an increased SNR 
(see Fig. 8b). This observation raises the question of whether 
the retrieved signal components are beneficial in terms of class 
separability and robustness against changing noise. From Fig. 
8c it is evident that using WCF in wavelet de-noising has 
positive effects on the classification performance. We can see 
an improvement throughout all settings investigated for both 
LDA and MLP classification. 

C. SWT- vs. DWT-based de-noising  
The experiments performed to find an optimal set of wavelet 
de-noising parameters showed analogous results for SWT- and 
DWT-based de-noising procedures regarding tendencies 

 
(a) 

 

   
(b) 

 

  
(c) 

 

Fig. 8 (a) De-noised signals (red lines) of noisy EMG signals (blue lines) with 
(right) and without (left) application of Wiener correction factor (b) Error 
measures (c) Changes in classification accuracies with LDA (left)  and MLP 
(right). Shaded error bars represent SD of the averaged EMG recording 
sessions (n=10). 
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between the evaluated parameters. The performance of SWT 
and DWT was evaluated by using favorable parameters: bior1.3 
wavelets, fourth level decomposition and level dependent 
adaptive thresholding combined with WCF. The resulting 
signal after SWT de-noising using the parameters mentioned is 
depicted in Fig. 9. 

As it can be seen from Fig. 10a, SWT-based de-noising 
outperformed DWT-de-noising in terms of MSE and SNR. 
These results were confirmed by the calculated classification 
accuracies, particularly when MLP classification was 
performed (see Fig. 10b). Notwithstanding, Fig. 10b shows that 
in case of LDA classification, SWT de-noising leads to reduced 
classification performance in the reference and in the 
NoiseAllSets condition and therefore cannot improve the accuracy 
under a high, consistent level of noise. 

 

D. Wavelet-based Artifact Reduction – Offline 
Fig. 11 illustrates the artifact reduction performance 

comparing high-pass filtering with corner frequencies of 10, 20, 
70 and 100 Hz, and our proposed wavelet algorithm. The 
wavelet algorithm outperformed conventional high-pass 
filtering in both SNR and MSE (see Fig. 11a). Mean segment-

wise processing time for the wavelet algorithm was under 
10 ms, which was considered small enough for real-time 
application. Furthermore, conventional high-pass filtering, 
especially at 70 and 100 Hz, caused higher MSE values as its 
application lead to changes throughout the whole signal 
whereas the wavelet algorithm modifies only the parts of the 
signal which are considered to be corrupted by artifacts. 

The improved performance on the error measures was 
accompanied by a substantial improvement in the NoiseTestingSet 
condition for both LDA and MLP classification for all filter 
corner frequencies except 100 Hz (p < .05). This indicates that 
using the algorithm proposed here is beneficial for real-time 
prosthetic control (see Fig. 11b).  

We found that MLP classifier dealt relatively well with 
occurring artifacts if they appear regularly throughout the 
signal, as no improvement could be observed with any of the 
signal filtering techniques in the NoiseAllSets condition (see Fig. 
11b).  

 

E. Wavelet-based Artifact Reduction – Real-time 
After finding our wavelet based algorithm outperformed 

conventional high-pass filtering offline, the next step was to 
assess its real-time performance. Results of the real-time 
motion tests are illustrated in Fig. 12.  

A reduction in completion time (p < .01) and an increase in 
accuracy (p < .01) were found on trial specific means when the 
proposed wavelet algorithm was applied, demonstrating its 
feasibility to operate in real-time. 

It follows from these results that the detection and removal 
of motion related artifacts via a wavelet coefficient based 
algorithm outperforms conventional high-pass filtering and can 
be used in real-time applications such as prosthetic control.  

  
(a) 

 

  
(b) 

 

Fig. 9 Wavelet algorithm compared with conventional high-pass filtering:  
(a) Error measures, (b) Changes in accuracy using LDA (left) and MLP (right). 
Shaded error bars represent SD of the averaged EMG recording sessions 
(n=10). Wavelet filtering showed a statistically significant improvement over 
10 Hz, 20 Hz, and 70 Hz filtering (p < .05) in the NoiseTestingSet condition. 
   

 

 
 

Fig. 11 SWT de-noised EMG signal (red) of former noisy EMG signal (blue) 
using bior1.3 wavelets, adaptive thresholding with WCF and threshold 
selection by minimax rule. 

   
(a) 

 

  
(b) 

 

Fig. 10 Evaluation of SWT and DWT-based de-noising: (a) Error measures, 
(b) Changes in LDA-Acc (left) and MLP-Acc (right). Shaded error bars 
represent SD of the averaged EMG recording sessions (n=10). 
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V. CONCLUSION 
Our results indicate that wavelet de-noising can be used to 

improve the robustness of EMG against changing noise without 
the pitfall of information losses when low or no noise is present. 

We found that wavelet de-noising did not improve 
classification accuracies when high but consistent levels of 
noise were present. This is expected from machine learning 
algorithms that incorporate noise as part of the signal. In such 
ideal cases, improvement of SNR as a pre-processing step prior 
to classification is unnecessary. However, the ideal case is far 
from real-life usage. 

We found that stationary wavelet transform (SWT) provided 
better results than discrete wavelet transform based de-noising. 
Although SWT has a higher computational cost, multi-signal 
processing can be applied in real-time, guaranteeing its 
usability in prosthetic control. Furthermore, the synthesis of 
Wavelet transform and Wiener filtering (Wavelet Wiener 
Filtering) provided promising results, and thus these should be 
further investigated since they have been scarcely discussed in 
the scientific literature. 

In the second part of this work, we presented a wavelet-based 
algorithm which is capable of detecting and removing artifacts 
caused by rapid limb movements and mechanical interference. 
We found distinct advantages compared to conventional high-
pass filtering, which is recommended in most literature. The 
algorithm proposed here outperformed conventional high-pass 
filtering with corner frequencies up to 100 Hz, and its feasibility 
in real-time processing was demonstrated.  

The algorithms were implemented from a theoretical 
standpoint, and can be further optimized. Varying strategies of 
the algorithms proposed here regarding the definition of the 
threshold and the thresholding procedure will therefore be 
assessed in future work.  
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