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Abstract

Objective. There is no single prevailing theory of pain that explains its origin, qualities, and alleviation. Although
many studies have investigated various molecular targets for pain management, few have attempted to examine
the etiology or working mechanisms of pain through mathematical or computational model development. In this
systematic review, we identified and classified mathematical and computational models for characterizing pain.
Methods. The databases queried were Science Direct and PubMed, yielding 560 articles published prior to January
1st, 2020. After screening for inclusion of mathematical or computational models of pain, 31 articles were deemed
relevant. Results. Most of the reviewed articles utilized classification algorithms to categorize pain and no-pain condi-
tions. We found the literature heavily focused on the application of existing models or machine learning algorithms
to identify the presence or absence of pain, rather than to explore features of pain that may be used for diagnostics
and treatment. Conclusions. Although understudied, the development of mathematical models may augment the cur-
rent understanding of pain by providing directions for testable hypotheses of its underlying mechanisms. Additional
focus is needed on developing models that seek to understand the underlying mechanisms of pain, as this could po-
tentially lead to major breakthroughs in its treatment.
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Introduction

Pain is a subjective experience mediated by a variety of

physiological, psychological, and social factors. A per-

sonal painful experience may not be easy to communicate

and may not be obvious to an observer, however, this

lack of apparent objective evidence cannot negate the

need for relief. Pain can exist without a physical stimulus,

such as with neuropathic pains, and noxious stimuli do

not always produce a painful experience, as seen in indi-

viduals with congenital insensitivity to pain [1]. This has

led to a definition of pain that does not tie it to a physical

stimulus. Instead, the International Association for Study

of Pain (IASP) has recently redefined pain as “an unpleas-

ant sensory and emotional experience associated with, or

resembling that associated with, actual or potential tissue

damage, or described in terms of such damage” [2].

There are many research efforts aiming to understand

pain in order to develop pain relief strategies, particularly

by using pharmaceutical methods [3]. Animal experi-

ments dealing with pain have suggested possible pain

pathways, regulatory systems, and modulatory schemes

that may also exist in humans [4, 5]. Other attempts to

alleviate pain include unconventional techniques such as

hypnosis and acupuncture [6–9]. Decades of
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neuroimaging studies using human subjects have also

vastly contributed to identifying regions involved in pain

perception with respect to various pain conditions [10].

These studies have relied on statistical techniques, and

more recently, machine learning, to make predictions on

the relevance of brain regions to pain conditions [11].

Despite the breadth of data collected from brain imaging

studies, statistical and machine learning approaches are

limited by their inability to isolate biologically meaning-

ful properties from others [12]. To date, an uncon-

strained method of studying the pain mechanism (i.e.,

free from uncontrollable variables and limited samples)

has remained out of reach.

As with many other phenomena, pain can be studied

at different scales. At the cellular level, hundreds of dis-

tinct changes had been identified as potential mediators

of neuropathic pain, thus creating an equally large and

challenging number of hypotheses yet to be tested [3]. A

higher level of study would be that of neural network dy-

namics, which although encompasses cellular changes as

reflected by neural firing behavior, does not require a

complete understanding of the cellular changes them-

selves to utilize the resulting behavior in order to form

working hypotheses. To this effect, mathematical and

computational models of neural dynamics resulting in

pain could be used to elucidate its etiology and serve as

guidance for its treatment. Models are descriptions, ab-

stract or material, that reflect or represent, and hence

provide access to, selected parts of reality [13]. The de-

velopment of a model requires 1) identification of the

phenomenon to be examined, 2) determination of basic

principles that drive the phenomenon, which are derived

from the underlying theory, 3) validation of the model

using experimental data, 4) iterative experimental work

and model refinement with new data and mechanisms

[13]. Once a model is validated, it can be used to better

understand the subtleties of the observed phenomenon or

to predict the behavior of the phenomenon under varying

conditions. This model development process may gener-

ate new knowledge to improve an existing theory [13].

In order for a model to guide clinical treatment of

pain, the model has to give insight into the pain condition

by determining the relationships between factors or

mechanisms that create the pain experience. A mechanis-

tic model is designed to maximize understanding of the

inner dynamics of the system through restricting the

number of components for comprehensibility. This kind

of model may reveal details about the pain mechanism

that direct experimental efforts or clinical attention. The

models proposed in Minamitani and Hagita [14] and

Britton and Skevington [15] are bottom-up models that

rely on fundamental physical concepts and are thus cate-

gorized as mechanistic models. In contrast, a predictive

pain model is one that aims to identify pain parameters

that are crucial to the presence or absence of pain. For

example, the model presented by Keijsers et al. [16] is

based on statistical methods and is categorized as a

predictive model. While both models have their utility, at

present, a deeper understanding of the internal pain dy-

namics may better direct efforts to treat pain. Hence, the

focus should be on the explanatory power of a model,

rather than only its predictive power. Ideally, a pain

model should have both explanatory and predictive char-

acter in order to optimally facilitate theoretical develop-

ment and clinical application. Mathematical and

computational models of pain can be designed such that

they may reveal undiscovered pain characteristics, ex-

plain clinical observations, or challenge current “truths”

about pain mechanisms. To the best of our knowledge,

this is the first review to focus on mathematical pain

models. In this work, we examine the efforts made so far

to understand pain via the development of said mathe-

matical and computational models.

Pain Theories

Until the second half of the 20th century, two main theo-

ries on pain were the specificity theory and the pattern

theory. In 1662, Descartes suggested that pain was a

product of neural processing and distinct from nocicep-

tion [17]. He proposed that noxious stimuli were con-

veyed to the brain via hollow tubules, and a stimulus of

adequate strength would evoke a painful sensation, while

a weaker one would evoke a tingling or tickling sensa-

tion. Descartes’ theory of pain has since been elaborated

and its details have culminated under the specificity the-
ory, which suggests that stimulation of pain receptors

produces nerve impulses that are transmitted to a pain

center in the brain via pain-specific pathways. Under this

theory, pain is considered an independent sensation,

therefore requiring a separate sensory system for its per-

ception—like for vision and hearing [17]. In contrast,

pattern theory emerged through an effort to quantify sen-

sation; the spatial-temporal pattern of impulses from the

peripheral nerves encoded the type of sensation and its

intensity. Weak and strong stimuli of the same modality

could produce different patterns, thereby producing non-

painful or painful experiences. This theory proposed that

the central nervous system decoded these impulse pat-

terns, but a sound explanation for this mechanism has

not been made [17,18].

In 1965, Melzack and Wall [19] proposed the gate

control theory of pain, in which spatial-temporal impulse

patterns transmitted from peripheral afferent Ab, Ad,

and C fibers are modulated at the spinal cord, and the

modulated signals determine pain modality in the trans-

mission cells in the dorsal horn, from which noxious in-

formation is projected towards the brain. The inclusion

of the brain as an important component in pain percep-

tion was a major contribution of this theory, as stated by

Melzack “never again, after 1965, could anyone try to

explain pain exclusively in terms of peripheral factors”

[20].
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In the gate control theory of pain, nociceptive pain is

mediated by unmyelinated C and Ad fibers. C fibers

transmit nociceptive signals from poorly localized nox-

ious stimuli, while the slightly larger and thinly myelin-

ated Ad fibers mediate intense, acute pain. The largest

nerve fibers—Ab fibers—respond to touch, pressure, and

tension. The gate control theory of pain suggests that Ab
fibers also play a role in pain, namely, in pain alleviation.

This is exemplified in the short-term reduction of pain by

applying light pressure to the painful region, like rubbing

a stubbed toe, or applying pressure to the skin after re-

moving a sticky bandage. Sufficient noxious input indu-

ces the firing of nociceptors, which can be achieved with

appropriate mechanical, thermal, or electrical stimuli

[21, 22].

No current theory is yet considered to account for

all the intricacies of the experience of pain [17]. New

ideas continue to emerge including other factors con-

sidered important to pain as a multidimensional expe-

rience, such as the neuromatrix theory [23], the mature

organism model [24] or the dynamic pain connectome

[25]. However, little guidance has been provided on

how such ideas could be falsified, or experimentally

verified.

Our group is particularly interested in phantom limb

pain (PLP), a class of neuropathic pain commonly suf-

fered after amputation of an extremity. Several hypothe-

ses on the genesis of PLP were proposed over the last

decades that are now challenged by clinical observations

[26]. This motivated Ortiz-Catalan to conjecture the sto-
chastic entanglement hypothesis for the genesis of PLP, in

which pain and sensorimotor circuitry becomes patho-

logically linked to activate despite the lack of nociceptive

input [26]. The somatosensory neural network is intrinsi-

cally linked to pain processing circuitry because all pain

is embodied, that is, somatosensory processing provides

the location in the body to a painful experience. The

“entanglement” was hypothesized to initiate by inciden-

tal random firing of neurons belonging to the impaired

sensorimotor network, unintentionally triggering neu-

rons involved in pain perception. This and other ideas on

the etiology and working mechanisms of pain, such as

the more general gate control theory by Melzack [22]

could be potentially studied using mathematical and

computational models. The possible mechanisms that

contribute to pain generation, perception, sensation, and

alleviation are better illuminated by designing models

that do not necessarily depend on datasets, but rather on

known properties of components in the system. These

models allow us to ask ourselves, “Do the properties of

the modeled system necessarily result in the observations

we make clinically, or are other outcomes possible?”

Iteratively asking this question and making changes to

the model would increase our understanding of the pain

mechanism. The aim of this article is to identify and clas-

sify published efforts in this direction in order to inform

future research.

Methods

We performed a systematic literature review to identify

and classify existing mathematical and computational

models on pain in order to discern the current utility of

these approaches. We searched the two databases:

Science Direct and PubMed. Article title, key words, and

abstracts were searched using the following search condi-

tion: (computational biology OR neural network OR

mathematical model OR dynamical systems) AND pain

AND (perception OR processing OR neuropathic OR

chronic OR phantom limb). The inclusion criteria re-

quired the articles to contain a mathematical theory or

computational approach to characterizing pain. Articles

were not excluded based on model efficacy or predictive

accuracy. We conducted no assessment of biases as this

review is not concerned on the study outcomes but the

models themselves. We considered journal articles pub-

lished prior January 1st, 2020. Conference proceedings,

book chapters, editorial letters, and non-English articles

were excluded. The screening procedure is presented in

detail in Figure 1.

The filtered search yielded 31 unique and relevant

articles from 560 initially screened. Relevant articles dis-

cussed computational techniques for quantifying pain us-

ing clinical data and experiments, and computer

simulations to replicate pain processing and perception.

Articles removed due to title or abstract excluded content

on modelling pain with mathematical or computational

Research Article Search
Pub Med (n = 141); Science Direct (n = 419)

Excluding non-English, conference proceedings,
book chapters, and editorial letters

Removal of duplicates (n = 50)
Exclusion due to title (n = 301)

Exclusion due to abstract (n = 183)

Screening of full text articles
Exclusion at full text (n = 0)

Articles added from extended
search (n = 5)

Article Review

n = 560

n = 26

n = 26

n = 31

Figure 1. Schematic view of the methodology used for the sys-
tematic review. From the filtered search, the articles reviewed
were required to contain a mathematical theory or computa-
tional approach to characterizing pain.
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models. No articles were excluded after review at full-

text. The peer-reviewed research articles were studied to

identify the current mathematical and computational

approaches to studying pain, and theories regarding the

generation, qualities, and alleviation of pain. A break-

down of article types is given in Figure 2.

Results

Mathematical Models of Pain
In [13], on pp. 28–32, a model taxonomy is presented in-

cluding conceptual, iconic, analogous, symbolic, phe-

nomenological, and statistical models. This taxonomy

was used in Table 1 where all articles found presenting

mathematical models of pain were classified and de-

scribed. Ten articles developed models for nociceptive

pain and three for neuropathic pain.

We found that the first quantitative analysis of noci-

ceptive conduction was performed in 1981. Minamitani

and Hagita proposed a mathematical model that gener-

ated a numerical description of nociceptive pain and

touch sensations [14]. Based on findings in physiological

and anatomical literature, including the gate control the-

ory schematic from Melzack and Wall [19], the model

simulated a one-directional ascending and descending

pathway for pain sensation. Peripheral receptors, afferent

Ab, Ad, and C fibers, and receptive neurons of the spinal

cord, brain stem, thalamus, and the cerebral cortex were

considered. To reduce complexity, interactions from lat-

eral inhibition and facilitation were not included in the

model. Even so, the model ended up with over 70 param-

eters. Whereas adaptation and conduction velocity of the

fibers were considered, the fibers in each neural unit,

consisting of the afferent fiber types, were prescribed

with constant conduction velocity and firing threshold.

The simulation was conducted with a single square-wave

pulse and a periodic repetitive pulse applied to peripheral

receptors. The activities of the neurons in the periphery

and the upper brain were represented by Wilson-

Cowan’s nonlinear differential equation. See the coupled

pair of ordinary differential equations (ODE) [11] and

[12] in [38], which considers continuous neuronal activ-

ity, and the distribution of peripheral receptors were de-

scribed as Gaussian. This system was able to generate

hysteresis and limit cycles; see also [39] for further

details. The firing characteristics of the neurons were

compared to physiological findings, where the results of

the simulation and literature coincided satisfactorily. The

modality of graded touch sensation, “fast stinging pain”

mediated by small unmyelinated Ad fibers, and “slow

burning pain” mediated by unmyelinated C fibers were

successfully simulated, despite the simplification of the

model. This work suggested that this proposed neural

network was useful to characterize different sensory mo-

dalities in pain.

In 1989, Britton and Skevington translated the gate

control theory of pain [19] into a mathematical model

simulating acute pain for a single transmission unit, con-

sisting of one Ab fiber, one C fiber, one inhibitory neu-

ron, and one excitatory neuron [15]. Figure 3 shows the

gate control theory adapted schematically. They pro-

posed a system of partial differential equations that

exhibited all characteristics of acute pain described in the

theory using the above mentioned Wilson-Cowan model

of activity in a synaptically coupled neuronal network

[38]. Furthermore, with some variation of parameters,

they suggested that their model could demonstrate tem-

poral pain qualities like throbbing and pulsing, and pos-

sibly expand the model’s validity to include neuropathy.

Neural Networks [n = 12] 
(16), (34-39), (54), (57-60)

Clustering [n = 3]
(42), (43), (55)

Linear Discriminant Analysis 
[n = 2] (39), (58)

Support Vector Machine
[n = 3] (56), (58), (60)

Classification Algorithms

Self-Organizing Map 
[n = 2] (40), (41)

Data Types Collected Mathematical Models

Neuropathic Pain [n = 3] 
(30), (31), (51)

Nociceptive Pain [n = 10]
(14), (15), (29), (46-50), (52), (53)

Pain Rating [n = 7] 
(39-41), (42), (43),

(52), (54)

Pressure Images
[n = 1] (16)

Physiological Parameters
[n = 3] (55), (57), (59)

Motion Parameters 
[n = 8] (34-41)

Brain Imaging [n = 5]
(42), (52), (56), (58), (60)

Figure 2. Articles sorted according to their classification algorithm, data collection method, or proposal of a mathematical model.
Articles could belong to more than one category and subcategory.
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Table 1. Literature on mathematical models of pain

Publication Pain Type Model Types* [13] Summary

Minamitani and

Hagita (1981) [14]

Nociceptive Analogous/

Symbolic

The neural network model simulated the conduction mecha-

nism of pain and touch sensations. Although only one direc-

tional ascending and descending pathway for pain sensation

was represented, and no interaction from inhibition or facili-

tation was considered, the modalities of graded touch sensa-

tion and two different pain modalities were observed.

Britton and Skevington

(1989) [15]

Nociceptive Analogous/

Symbolic

Melzack’s gate control theory of pain was translated into a

mathematical model simulating acute pain for a single trans-

mission unit. The partial differential equations were based

on the Wilson-Cowan model for synaptically coupled neuro-

nal networks.

Spitzer et al. (1995) [27] Neuropathic

(Phantom Limb)

Analogous/

Phenomenological

A self-organization feature map using Kohonen network was

used to simulate the effects of amputation. The Kohonen net-

work was trained on input patterns and subsequently de-

prived parts of the input patterns in order to simulate partial

deafferentation. This led to reorganization driven by input

noise, which represented noise generated by erratic firing of

lacerated dorsal root ganglion sensory neurons.

Haeri et al. (2003) [28] Nociceptive Analogous/

Phenomenological

An artificial neural network to model the steady state behavior

of pain mechanisms was developed using input patterns

from small and large nerve fibers. For stimulation states cor-

responding to acute pain, a collection of basic patterns was

used as features for the model. Given a novel pain stimulus,

the prediction of pain was possible.

Xu et al. (2008) [29] Nociceptive (Thermal) Symbolic Considering the biophysical and neural mechanisms of pain

sensation, a mathematical model for quantifying skin ther-

mal pain that included transduction, transmission, and per-

ception was proposed. This model proposed that the

intensity of thermal pain was related to the character of the

noxious stimulus.

Cecchi et al. (2012) [30] Nociceptive (Thermal) Analogous/

Symbolic

Thermal pain perception was modelled as a dynamical system

to be compared to reported pain ratings from intensity-vary-

ing thermal stimuli. Using a sparse regression method, pain

ratings were predicted according to fMRI data and reported

pain ratings.

Rho and Prescott (2012) [31] Neuropathic Conceptual/

Symbolic

A computational model was developed to simulate the onset of

neuronal hyperexcitability from a normal spiking pattern.

Parameters changes were sufficient to alter the normal spik-

ing pattern to a repetitive one, enabling membrane potential

oscillations, and bursting, suggesting that the three patholo-

gies are related.

Boström et al. (2014) [32] Neuropathic

(Phantom Limb)

Conceptual/

Phenomenological

A computational model of phantom limb pain was developed

based on the increase of spontaneous nociceptive firing.

They proposed that the same underlying mechanism that

results in ectopic spontaneous activity of deafferented noci-

ceptive channels was responsible for phantom pain, mal-

adaptive reorganization, and persistent representation.

Prince et al. (2014) [33] Nociceptive Analogous/

Symbolic

Britton and Skevington’s acute pain model was replicated and

expanded to verify the assumption that neighboring trans-

mission units behave similarly. With sufficient increase in the

number of transmission units input to the midbrain, trans-

mission unit potential decreased, suggesting a saturation

point in which transmission units may fail to fire despite neu-

ral fiber activation.

Tigerholm et al. (2014) [34] Nociceptive Analogous/

Symbolic

Axonal conduction velocity by activity differs between patients

with neuropathic pain and those without, suggesting that

this property may play a role in the development of neuropa-

thies. A mathematical model of human cutaneous C-fibers

was developed to investigate the activity-dependent changes

of axonal spike conduction.

Dick et al. (2017) [35] Nociceptive Analogous/

Symbolic

By implementing a mathematical model of rat nociceptive neu-

ronal membrane, a mechanism of ectopic bursting suppres-

sion in dorsal root ganglia neurons with comenic acid was

(continued)
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This is quite remarkable given that the model is relatively

minimalistic. See Equations (9) in [15] that consist of three

coupled ODEs and only three unknown variables. This

was utilized by the authors to prove analytic results about

the uniqueness of a steady state solution. In 2004, this

model was repeated and expanded, using more modern

computational hardware and software, for the assumption

that neighboring transmission units behave similarly [33].

The acute pain model was extended by increasing the num-

ber of transmission units communicating to the midbrain.

Neighboring transmission units were found to behave simi-

larly, but the transmission unit potential decreased when

the number of transmission units increased sufficiently.

This suggested a saturation point in which transmission

units may fail to fire despite neural fiber activation [33].

In 2012, Rho and Prescott used relatively sophisti-

cated tools and insights in non-linear dynamics to de-

velop a computational model to simulate the onset of

neuronal hyperexcitability from a normal spiking pattern

[31]. Nerve injuries may cause various molecular

changes, and any one change may singly cause neuropa-

thy. The model demonstrated that the accumulation of

small parameter changes was enough for 1) modifying

the normal spiking pattern to a repetitive one, 2) enabling

membrane potential oscillations, and 3) bursting. These

changes suggested that all three pathological events are

related. This study contrasts with other studies on neuro-

pathic pain in that instead of identifying changes that re-

sult from pain, this model examined the combination of

molecular changes that result in neuropathic excitability.

Table 1. continued

Publication Pain Type Model Types* [13] Summary

proposed. The administration of comenic acid to the model

reduced rhythmic discharge frequency due to a decrease in

the effective charge transferring via sodium gate activation

dynamics.

Crodelle et al. (2019) [36] Nociceptive Statistical/

Symbolic

A mathematical model of the dorsal horn neural circuit relying

on firing rates and model parameters from experimental lit-

erature was developed to describe daily modulation of pain

sensitivity. The inversion of daily rhythmicity of pain in neu-

ropathic patients was proposed to be the result of dorsal

horn circuitry dysregulation.

Dick (2020) [37] Nociceptive Analogous/

Symbolic

Bifurcation analysis was used to determine the relationship be-

tween the nociceptive neuron model and the antinociceptive

effect that occurs during neuropathic pain suppression. The

molecular mechanism of the bursting suppression was asso-

ciated with the modification of the activation gating system

of Nav1.8 channels by comenic acid, suggesting a possible

molecular treatment for neuropathic pain.

*Conceptual models are the most basic of the model types. They are pedagogical and useful as foundations to more quantitative models. Analogous models

borrow their structure from more well-known systems. Symbolic models are ordinarily described in mathematical language, i.e., symbols. Phenomenological mod-

els are symbolic in nature, but are often referred to as “black box models,” since their predictive power is the only priority. Statistical models are symbolic models

where the mathematics is taken from probability theory. For additional details, see [13].

Skin Receptors

Stimulus

Excitatory SG Cells

Transmission Unit

C and Aδ Nerve Fibers

Aβ Nerve Fibers

Inhibitory SG Cells

Cognitive Control

Descending
Inhibitory Control

Action System

+

+

_

+

+
± +

+

Figure 3. Melzack and Wall’s gate control theory of pain shown schematically. Compare with the original Figure 4 in [19] and the
variants in Figure 1 in [15] and Figure 1 in [33]. Plus signs (þ) denote excitation, and minus signs (�) denote inhibition. Cognitive
control can be excitatory or inhibitory. SG ¼ substantia gelatinosa cells in the dorsal horn of the spinal cord.
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In 2014, Boström et al. developed a computational

model of PLP, suggesting that phantom pain, maladap-

tive reorganization, and persistent representation are all

symptoms of the same underlying mechanism that results

in ectopic spontaneous activity of deafferented nocicep-

tive channels [32]. They considered the somatosensory

cortex to be dynamically self-organized, where spontane-

ous activity in the sensory system exists and is abnor-

mally increased in regions affected by deafferentation.

Following the gate control theory’s discussion on pain

sensitization, they presume that a long-term decrease in

input strength results in a similar change to the gating

threshold. Their results suggest that amputation causes a

threshold decrease, thereby allowing greater spontaneous

activity in the sensory system. The assumptions required

for this computational model consider nociception, but

they excluded an explanation about a possible mecha-

nism for pain perception or instantiation of a painful ex-

perience. Their model was based on PLP being the result

of increased spontaneous nociceptive firing in the severed

nerves, and thus initiated and maintained by the periph-

eral nervous system, which contradicts current views on

PLP being maintained by central changes [40, 41].

Pain Classification Algorithms
A considerable number of studies on pain involved pain

questionnaires, experimental setups, and brain imaging.

A small subset of these have used classification algo-

rithms for identifying characteristics of pain from col-

lected data. Table 2 lists, classifies, and describes the 18

articles found in this systematic review that relied on

classification algorithms to differentiate between the

presence or absence of pain.

Twelve of the 18 used neural networks, and 6 of these

were applied to identify chronic low back pain using

parameters acquired from surface electromyography

(sEMG), kinematic data, images, or video. Classification

accuracies measured 80% or higher, indicating neural

networks could be complementary to physiotherapist

assessments [42–45,54, 55]. Two additional articles uti-

lized self-organizing maps to categorize patients with and

without chronic low back pain from activity levels and

pain questionnaires [46, 47].

In another effort to autonomously classify data, Atlas

et al. used cluster analysis with fMRI, demonstrating

some brain regions responded to the intensity of a ther-

mal stimulus but did not predict pain [52]. Other brain

regions did not respond to noxious heat input but did

predict pain. Balaban et al. used fuzzy C-means cluster

analysis to identify three response phenotypes to two

time-varying oral capsaicin administration paradigms in

order to examine individual pain differences [48]. This

work proposed classification of human pain responses by

temporal pattern, rather than by threshold or magnitude

of response.

Discussion

Owing to its complexity, understanding pain in all its va-

rieties has proven challenging, and therefore many efforts

are made toward understanding factors that contribute

to specific pain conditions. Often these efforts require ex-

perimental laboratory work or clinical studies which can

have long reporting times and are unique to the mole-

cules explored or subject data collected. Mathematical

models are advantageous in that they do not require data

acquisition until validation, thereby permitting the devel-

opment of several models and subsequently corroborat-

ing each with experimental data simultaneously.

Furthermore, mathematical models can be designed to

examine specific or general phenomena. Despite these ap-

parent benefits, the publications we found on mathemati-

cal modelling of pain averaged 17.8 citations (614.1) by

December 31st, 2020, which is an indication that mathe-

matical modelling has not been a tool widely employed

nor accepted in the study of pain. This is notwithstanding

its proven utility in helping to understand complex bio-

logical processes, such as in exploring the neural dynam-

ics of vision and in predicting the spread of infectious

diseases [59, 60].

A possible explanation for the lack of mathematical

models on pain is the lack of appropriate data to test

them. There are many molecular candidates for targeted

pain relief [3], but their interactions and dynamics are

difficult to inject into a mathematical theory for pain

without creating a model unique to a single set of mole-

cules and their conditions. There is an ever-growing num-

ber of parameters to consider, and the complexity of

developing a robust model that does not oversimplify the

pain experience is a mounting barrier; see for example

[13]. In Minamitani and Hagita’s model [14], even with-

out considering lateral inhibition and facilitation, their

model utilizes over 70 parameters. The sheer number of

parameters complicates model construction such that it is

a deterrent to replications and expansions. Furthermore,

the psychological factors that affect the pain experience

are difficult to include in mechanistic models due to the

required simulation of other higher-order brain processes

like memory, attention, and learning. Even with concur-

rent simulation of related higher-order brain functions,

the number of parameters to model would considerably

increase, thereby significantly increasing the complexity

of the model and reducing its comprehensibility. At this

point, it is unclear which biomarkers are present in all

instances of pain, hence the difficulty in creating an all-

inclusive model.

We found that the few mathematical models that tack-

led the root of pain generation often relied on simplified

representations of neural mechanism and missed the

mark of mimicking the variety of pain types. In Britton

and Skevington’s 1989 mathematical model of the gate

control theory, acute pain was successfully simulated and

further analysis suggested an explanation for temporal
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Table 2. Literature on pain classification algorithms

Publication Pain Type
Classification
Algorithm Input Data Type Output Type Summary

Gioftsos and

Grieve

(1996) [42]

CBP ANN Motion Parameters Healthy Control,

CBP,

Fake CBP

Categorized chronic low back

pain patients, fake low back

pain patients, and healthy con-

trols based on sit-to-stand

maneuvers using an ANN and

physiotherapist assessment.

The ANN better detected ab-

normal movement patterns but

was not necessarily better at

diagnosing.

Oliver and Atsma

(1996) [43]

CBP ANN Motion

Parameters (sEMG)

Healthy Control, CBP Categorized chronic low back

pain patients and healthy con-

trols using sEMG power spec-

tra data collected from

contraction tasks using an

ANN.

Magnusson et al.

(1998) [44]

CBP ANN Motion Parameters Pre-Rehabilitation

Motion Data,

Post-Rehabilitation

Motion Data

Identified chronic low back pain

characteristics from trunk mo-

tion data in patients undergo-

ing chronic low back pain

rehabilitation.

Dickey et al.

(2002) [45]

CBP ANN, LDA Motion Parameters,

Pain Rating

Pain Response for

Vertebral Motion

Chronic low back pain motion,

intravertebral deformation,

and pain were assessed with

LDA and an ANN. The ANN

showed a strong relationship

between observed and pre-

dicted pain due to the nonlin-

ear relationship between

vertebral motion parameters

and pain.

Liszka and Martin

(2002) [46]

CBP SOM Motion Parameters,

Pain Rating

Functional Status

(SF-36 Score)

Categorized pain and activity lev-

els through functional status

derived from the SF-36 ques-

tionnaire from patients with

acute back pain and chronic

back pain. The correlation co-

efficient between the true and

predicted SF-36 scores for

mental and general health

were significant with the inclu-

sion of activity and pain data.

Liszka and Martin

(2005) [47]

CBP SOM Motion Parameters,

Pain Rating

Investigated the relationship be-

tween daytime chronic back

pain levels and sleep activity

using a SOM neural network.

Results showed that daytime

pain levels and sleep activity

were not correlated, however,

daytime pain variance was cor-

related with sleep activity lev-

els and patterns.

Balaban et al.

(2005) [48]

Nociceptive

(Chemical)

Cluster Analysis Pain Rating 3 Capsaicin Response

Phenotypes

Identified 3 response phenotypes

(level detection, change detec-

tion, and cumulative irritation)

to 2 time-varying capsaicin ad-

ministration paradigms and

proposed a method of classify-

ing human pain responses by

temporal pattern, rather than

by threshold or magnitude of

response.

(continued)
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Table 2. continued

Publication Pain Type

Classification

Algorithm Input Data Type Output Type Summary

Behrman et al.

(2007) [49]

Neuropathic ANN Pain Rating Neuropathic Pain,

Non-neuropathic

Pain

Compared an ANN to traditional

scoring systems for differenti-

ating neuropathic pain and

non-neuropathic pain patients

using responses from a neuro-

pathic pain questionnaire.

Argued that nonlinearities

within data are insignificant

since both classification meth-

ods achieved similar results.

Cannistraci et al.

(2010) [50]

Neuropathic Cluster Analysis Cerebrospinal Fluid Neuropathic Pain,

Non-neuropathic

Pain

Proposed Minimum

Curvilinearity for dimension

reduction and clustering for

the classification of 2 D elec-

trophoresis gel images derived

from proteomic cerebrospinal

fluid profiles of peripheral neu-

ropathic patients and ALS

patients unaffected by neuro-

pathic pain. This method im-

proved classification accuracy

of small nonlinear datasets.

Brodersen et al.

(2012) [51]

Nociceptive

(Thermal)

SVM Brain Imaging (fMRI) Investigated the predictive ability

of fMRI data for decoding

painful stimuli using multivari-

ate analysis on different spatial

scales (single voxels, individual

anatomical regions, combina-

tions of regions, or whole-

brain activity).

Keijsers et al. [16] Nociceptive

(Mechanical)

ANN Pressure Images Healthy Control,

Forefoot Pain

Identified differences in plantar

pressure patterns in people

with and without forefoot

pain.

Atlas et al.

(2014) [52]

Nociceptive

(Thermal)

Cluster Analysis Brain Imaging (fMRI),

Pain Rating (VAS)

Identified brain mediators of pain

induced by thermal stimuli us-

ing multi-level mediation anal-

ysis. Cluster analysis showed

that the mediators belonged to

several distinct functional net-

works with complementary

roles in pain genesis. The iden-

tified networks did not neces-

sarily respond to noxious

input and predict pain, indicat-

ing various brain regions con-

tribute to the pain.

Ozkan et al.

(2015) [53]

Fibromyalgia ANN SSR, Various

Physiological Tests

Healthy Control,

Fibromyalgia Pain

Demonstrated that the inclusion

of SSR parameters as a feature

in a fibromyalgia ANN model

increases classification accu-

racy from 96.51% to 97.67%.

Argued that SSR parameters

could be used as new auxillary

diagnostic factors for

fibromyalgia.

Caza et al.

(2016) [54]

CBP ANN Motion Parameters

(sEMG)

Healthy Control,

CBP

Categorized chronic low back

pain patients and healthy con-

trols from sEMG data col-

lected from a muscle

endurance task. A surrogate

analysis of the data scored

each channel on the sEMG

(continued)
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qualities of pain, a phenomenon previously unexplained

by this theory [15]. However elegantly constructed from

a set of three coupled ODEs, the parameters and func-

tions were only generally described and essentially not

based on experimental measurements. The possibility of

modifying the model to also simulate chronic pain via the

inclusion of a plasticity scheme was surprisingly never re-

alized in any future work [28,33], despite its tangibility.

Efforts towards a general understanding of pain and its

origin diminished in more recent decades, in favor of

models for specific pain conditions.

Recent models have examined specific aspects of pain,

such as daily variance of intensity, nociceptor response to

chemical or thermal stimuli, and PLP [29,32,35–37]. The

limitation of these models lies in the lack of generalizabil-

ity. The computational model of PLP developed by

Boström et al. [32] is one that claims that spontaneous

activity in the somatosensory cortex is abnormally in-

creased in regions affected by deafferentation, in which

PLP arises. In line with mechanisms of pain sensitization

from the gate control theory, they assume that amputa-

tion puts no constraint on nociceptive input due to the

lack of sensory input, leading to a decrease in gating

threshold and thereby an increase in spontaneous activ-

ity. Self-organization of the somatosensory cortex would

maladapt to this sustained absence of sensory informa-

tion and result in PLP [32]. Although nociception is con-

sidered in this model, no pain mechanism is discussed

that supports maintenance of firing at the severed nerves.

Despite the complexity of this model, the results were

expected given that their model was constructed using

rather strong assumptions on the underlying PLP process

and well-known but complex phenomenologically model

parts, such as Kohonen maps (also known as self-

organizing maps, SOM).

Articles discussing pain classification algorithms aver-

aged 24.7 citations (SD ¼ 28.0). Most of this literature

focused on categorizing behavioral and brain imaging

data to identify the presence of pain. The primary focus

of these articles was on developing more effective meth-

ods of identifying characteristics and patterns of pain in

order to give more accurate predictions. The use of artifi-

cial neural networks was successful for identifying

patients with chronic low back pain using motion param-

eters and sEMG, suggesting its diagnostic power.

However, none of these articles attempted to differentiate

no pain, acute pain, and chronic pain due to limitations

set on the scope of the experiments. In studies comparing

clinician and algorithmic predictive successes, there were

missed opportunities to scrutinize examples in which the

clinician and algorithm disagreed. This error analysis

could have been used to improve the algorithms and to

augment the clinician’s knowledge in diagnosing pain

conditions. Lastly, the reliance on collecting suitable data

types in sufficient amounts is detrimental when relying

on these classification methods. Despite these challenges,

Table 2. continued

Publication Pain Type

Classification

Algorithm Input Data Type Output Type Summary

sensory array based on the

fractal dimension, showing

nonlinearity. The most nonlin-

ear values were used as signal

characteristics for the ANN

model.

Hu et al. (2018) [55] CBP ANN Motion Parameters Healthy Control, CBP Identified low back pain patients

using static balance control

performance data during static

standing tasks.

Vuckovic et al.

(2018) [56]

Neuropathic

(Spinal Cord Injury)

ANN, LDA, SVM Brain Imaging (EEG) Healthy Control,

At-Risk Group

Classified spinal cord injured

patients at risk of developing

neuropathic pain by compar-

ing them to patients who had

already developed pain and

healthy controls.

Henssen et al.

(2019) [57]

Chronic Intractable ANN Patient History,

Experimental

Variables

Identified predictive variables

that influence the outcome of

implantable motor cortex

stimulation for intractable

pain.

Santana et al.

(2019) [58]

CBP, Fibromyalgia ANN, SVM Brain Imaging (fMRI) Resting-state fMRI data from

chronic pain patients and

healthy controls were collected

to assess the accuracy of differ-

ent machine learning models

for classification of chronic

pain.
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computational models are invaluable tools for examining

the full spectrum of conditions because combinations of

parameters can be studied faster than with clinical stud-

ies, which cannot test exhaustively.

Finally, we encourage researchers to provide experi-

mental procedures to falsify their proposed hypothesis,

such as those illustrated by Devor on molecular mecha-

nisms [3] and Ortiz-Catalan on PLP [26].
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