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Abstract— Offline accuracy has been the preferred 

performance measure in myoelectric pattern recognition (MPR) 

for the prediction of motion volition. In this study, different 

metrics relating the fundamental binary prediction outcomes 

were analyzed. Our results indicate that global accuracy is 

biased by 1) the unbalanced number of possible true positive 

and negative outcomes, and 2) the almost perfect specificity and 

negative predicted value, which were consistently found across 

algorithms, topologies, and movements (individual and 

simultaneous). Therefore, class-specific accuracy is advisable 

instead. Additionally, we propose the use of precision (positive 

predictive value) and sensitivity (recall) as a complement to 

accuracy to better describe the discrimination capabilities of 

MPR algorithms, as these consider the effect of false 

predictions. However, all the studied offline metrics failed to 

predict real-time decoding, and therefore real-time testing 

continue to be necessary to truly evaluate the clinical usability 

of MPR. 

I. INTRODUCTION 

Powered prosthetic devices currently offer more degrees 
of freedom (DoF) and those possibly controlled in an 
intuitive manner by patients with missing limbs. The 
conventional control strategy for such prostheses is based on 
myoelectric signals recorded by superficial electrodes. The 
strength of the myoelectric activity captured by one electrode 
is linked to the actuation of a prosthetic unit in one direction 
(e.g., hand open), while the opposite direction (e.g., hand 
close) is normally controlled by a second electrode, which is 
placed in a muscle antagonistic to the first one. Because 
isolation of independent control signals is difficult to achieve 
by surface electrodes, this direct control strategy is normally 
limited to a single DoF. 

Myoelectric pattern recognition (MPR) has been 
explored as an alternative to direct control for decades [1], 
[2]. It has been shown that a variety of movements, or 
postures, can be predicted using a set of superficial 
electrodes, and thus potentially provide intuitive control of 
several DoF. 

The most common metric to evaluate the performance of 
a given MPR algorithm is the classification accuracy, or its 
complement, the classification error [3]. However, accuracy 
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can be an ambiguous term which authors tend to obviate and 
skip its definition when reporting. Since accuracy can be 
calculated in a variety of ways, with no standardized 
reporting form [4], misinterpretation can occur and it has 
been reported problematic in clinical tests [5]. 

Additionally, classification accuracy computed with pre-
recorded data (offline) has been observed to provide a higher 
expectation of real-time performance than actually delivered 
[6]–[9]. On the other hand, perfect offline accuracy has been 
found not always necessary to yield controllable systems [9], 
[10]. These findings suggest the need for offline MPR 
performance metrics that can better relate to real-time 
controllability, such as the active error rate (1–precision), 
which has been proposed [11] and further reported [8] as a 
more informative indicator of MPR performance. 

In this work, fundamental metrics for binary 
classification were evaluated in MPR of individual and 
simultaneous hand and wrist movements. A variety of MPR 
algorithms were employed in single and dedicated topologies 
in order to study the different metrics, as well as their 
potential relationship to real-time performance. 

II. METHODS 

A.  Definitions 

For every binary prediction made by the classifier, there 
are four possible outcomes for each of the classes involved: 
true positive (correct activation), true negative (correct 
inactivation), false positive (incorrect activation), and false 
negative (incorrect inactivation). These possible outcomes 
and their basic ratios are shown in Table I. 

 
Table I. Possible outcome of binary classification and their basic ratios. PPV = positive 

predicted value (also known as precision), and NPV = negative predicted value. 

MPR is of most value in multi-class problems. This 
means that there are several movements that can be binary 
predicted concurrently. A prediction can be considered 
absolutely correct, if the outcome of all the classes involved 
is true (positive and negatives), i.e., it is enough for one class 
to be classified erroneously, for the absolute prediction to be 
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(TP) 
False Positive 

(FP) 
PPV (Precision) 

=
FPsTPs

TPs


 

Negative False Negative 

(FN) 
True Negative 

(TN) 
NPV 

=
FNsTNs

TNs


 

Basic Ratio 
Sensitivity 

=
FNsTPs

TPs


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incorrect. For example, consider an algorithm with the task 
to predict the activation of a myoelectric hand (open/close) 
and elbow (flexion/extension). If the subjects aims for hand 
open, and the classifier outputs hand open and elbow flexion, 
the class hand open would be a true positive (correct), but 
the absolute prediction will be incorrect because elbow 
flexion will be a false positive. 

The latter exemplifies two different ways in which 
accuracy can be computed. 

 Global accuracy. This is the most general 
computation including all possible outcomes for 
each class: 

FPsFNsTNsTPs

TNsTPs
AccG






       (1) 

 Class-specific accuracy. Alternatively to consider 
the outcome of each class individually, absolutely 
correct predictions can be used instead (no false 
outcomes for any movement) : 

spredictionabsolutetotal

spredictioncorrectabsolute
AccCS 

   (2) 

It is a common practice to report the accuracy for each 
class separately, in which case, attention must be paid to use 
the proportional amount of the total predictions, i.e., if a total 
of 120 predictions were made for 6 classes (20 each), the 
class specific accuracy must considered the outcome of the 
20 predictions where that specific class was expected, 
divided by 20. 

Additionally, the outcome of the binary predictions can 
be combined in basic ratios that provide relevant information 
on the test capability to identify the true condition (reality) 
[12], such as: 

 Sensitivity (recall), which in the context of MPR 
relates the portion of desired movements (positives) 
that are predicted as such (true). In other words, if 
the subject is intending a given motion, how likely 
is for the classifier to activate it? 

 Specificity, on the other hand, addresses the question 
of how likely is for a given movement to stay or go 
inactive (negative), if not required (true). 

Conversely, the predictive values provide information on 
the correctness of the prediction outcome, rather than the 
capabilities of the test to identify reality [13].  

 Positive predictive value (PPV) or precision relates 
the portion of positive predictions that are true. In 
MPR, it addresses the question of how likely is for a 
predicted movement to be the correct one. 

 Negative predictive value (NPV) addresses the 
question: If a motion is not predicted (negative), 
how likely is that it was actually desired? 

Additionally, the equilibrium on how false positives and 
negatives relate to true positives is commonly measured by 
the F1-score defined as:  

ysensitivitprecision

ysensitivitprecision
F




 2

1
       (4) 

B.  Myoelectric pattern recognition 

The aforementioned metrics were used to evaluate the 
prediction of individual and simultaneous hand and wrist 
movements. Table II summarizes the data used in this study. 

Set Electrodes Mov. Sub. 

Individual 4 11 20 

Simultaneous 8 27 17 

Table II. Summary of the myoelectric recordings from individual and simultaneous 

movements (Mov.) recorded in the most proximal third of the forearm with 4-8 bipolar 

electrodes equally spaced in 17-20 subjects (Sub.). 

The individual movements were: hand open/close, wrist 
flexion/extension, pro/supination, side grip, fine grip, thumb 
up, index extension, and no motion (11 classes) [9]. The 
simultaneous movements were: hand open/close, wrist 
flexion/extension and pro/supination, plus all their possible 
combinations, and no motion (27 classes) [14]. These data 
sets are freely available online within BioPatRec [9].  

The data acquisition, recording protocol, and signal 
processing are described elsewhere for individual [9] and 
simultaneous movements [14]. Briefly, four time-domain 
features (mean absolute value, wave length, zero crossings, 
and slope sign changes) were extracted from 121 time 
windows of 200 ms (isometric contractions at comfortable 
and sustained force level). The resulting feature vectors were 
divided into 48 (40%) and 24 (20%), for training and 
validation, respectively. The remaining 49 (40%) feature 
vectors were used for computing the aforementioned 
classification metrics. The results here reported 
corresponded to the average of 10 evaluations for which all 
the 121 feature vectors were randomized into the different 
sets (training, validation, and testing) prior to the 
computation of the evaluation metrics (cross-validation). 

Fundamentally different classifiers were employed in this 
study: Linear Discriminant Analysis (LDA) as a statistical 
classifier [15]; Multi-Layer Perceptron (MLP) as a 
supervised Artificial Neural Network (ANN) [16]; Self-
Organized Map (SOM) as an unsupervised ANN [16]; and 
Regulatory Feedback Networks (RFN), a negative-feedback 
based algorithm [9]. Additionally, the conventional use of 
these classifiers in a single topology was compared to better 
performing one-vs-one (OVO) [8], [14], and ago-
antagonistic-mixed (AAM) [14] topologies for individual 
and simultaneous predictions, respectively. 

III. RESULTS 

Table III summarizes the results for all metrics, and these 
are graphically presented in box plots where a central mark 
indicates the median value; the edges are the 25th and 75th 
percentiles; the whiskers give the range of data values; and 
solid markers represent the mean values. The standard 
deviation is not shown in the summary tables for clarity, 
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however, the results distribution can be observed in Figs 1-4. 
RFN was omitted from the figures on simultaneous 
movements due to its poor performance, and LDA is 
inherently unable to predict simultaneous motions as a single 
classifier without the label power set transformation [14]. 

 
(%) 

AccCS / AccG 

Ind. 

(Single) 

Ind.  

(OVO) 

Sim. 

(Single) 

Sim. 

(AAM) 

LDA 92.1 / 98.6   95.9 / 99.2 - 79.0 / 96.4 

MLP 90.1 / 98.7 92.8 / 98.7 93.3 / 98.9 94.0 / 98.9 

SOM 88.5 / 98.3 94.4 / 99.0 93.7 / 98.8 93.6 / 98.8 

RFN 84.0 / 97.1 87.3 / 97.7 17.7 / 81.3 33.8 / 85.4 

Sens. / Spec.     

LDA 92.1 / 99.2 95.9 / 99.6 - 93.4 / 98.0 

MLP 91.3 / 99.4 92.8 / 99.3 98.0 / 99.4 97.9 / 99.4 

SOM 93.2 / 98.8 94.4 / 99.4 98.7 / 98.9 98.5 / 99.0 

RFN 84.0 / 98.4 87.3 / 98.7 47.2 / 97.5 76.4 / 89.6 

PPV (Prec.) / NPV      

LDA 92.1 / 99.2 95.9 / 99.6 - 93.7 / 96.9 

MLP 93.9 / 99.1 92.8 / 99.3 97.9 / 99.0 98.0 / 99.0 

SOM 89.1 / 99.3 94.4 / 99.4 96.9 / 99.3 97.1 / 99.3 

RFN 84.0 / 98.4 87.3 / 98.7 86.3 / 80.4 72.8 / 90.3 

F1-score     

LDA 92.1 95.9 - 93.5 

MLP 92.5 92.8 97.9 97.9 

SOM 91.0 94.4 97.7 97.8 

RFN 84.0 87.3 60.5 74.6 

Table III. Evaluation metrics for the prediction of individual (Ind.) and simultaneous 

(Sim.) movements. 

 

Figure 1. Evaluation metrics for the predicition of 11 individual movements (20 

subjects) in a single classifier topology. 

 

Figure 2. Evaluation metrics for the predicition of 11 individual movements (20 

subjects) in a One-Vs-One (OVO) classifier topology. 

 

 

Figure 3. Evaluation metrics for the predicition of simultaneous movements in 3 DoF 

(27 classes - 17 subject) in a single classifier topology. 

 

Figure 4. Evaluation metrics for the predicition of simultaneous movements in 3 DoF 

(27 classes - 17 subject) in a agoantagonistic and mixed (AAM) topology. 

In order to investigate how the offline metrics relate to 
real-time classification, these were compared with the real-
time accuracy from the motion test reported in [9]. Individual 
movements predicted by LDA, MLP and RFN, matched with 
its corresponding subjects and movements are plotted versus 
real-time accuracy in Fig. 5. 

 
Figure 5. Offline evaluation metrics for individual movements plotted agains real-time 

accuracy. Predictions by LDA, MLP, and RFN as reported in [9]. 

IV. DISCUSSION 

Our results indicate that a higher specificity over 
sensitivity is a common situation in MPR, across classifiers, 
topologies, and type of movements. Similarly, the NPV was 
consistently found higher than the PPV (precision). In this 
particular set of individual movements, for every true 
positive, there are ten true negatives, thus the effect of false 
predictions is higher when considering ratios involving true 
positives (sensitivity and PPV) over true negatives 
(specificity and NPV). This might explain why the persistent 
difference between them, which is less accentuated in the 
prediction of simultaneous movements as the number of 
possible true positives increases. 

The almost perfect specificity and NPV suggests that 
when a classifier predicts a movement as inactivate 
(negative), it is very likely that the particular movement was 
not required. Moreover, no considerably different effect was 
observed from false positives or negatives when considering 
the total number of true negatives. 

The higher number of possible true negatives over 
positives, together with the almost perfect specificity and 
NPV showed by all classifiers and topologies, explain why 
global accuracy is almost perfect, and thus potentially 
misleading. Conversely, class-specific accuracy is not 
affected by the imbalance between the possible true 

1142



  

negatives and positives, thus it should be preferred over 
global accuracy. Moreover, attention must be paid as these 
two computations can produce conflicting results, as in the 
case of LDA and MLP (Ind. - Single). 

In our previous work with MPR [9], [14], [17], [18], we 
arbitrarily decided to report our findings using class-specific 
accuracy without defining it, while only few authors have 
explicitly done so [19], [20]. Regardless of the computation 
use to calculate accuracy, it is advisable to always define it. 

Considering the bias towards higher global accuracy, 
and that false positives have been suggested more 
detrimental to prosthetic control than false negatives [11], 
precision and sensitivity are potentially more interesting 
metrics over global accuracy as they consider the effect of 
false predictions over the less represented true condition 
(positives). The balance between these metrics can be 
monitored with the F1-score, however if given the choice, a 
higher precision over sensitivity is potentially preferred to 
improve controllability. Further real-time evaluations will be 
conducted to test this hypothesis. 

Our results further suggest that one reason for the OVO 
to outperform single classifiers [8], [14], is mainly due to the 
improvement of precision, which also balances its 
relationship with sensitivity without compromising it 
(increased F1-score). Interestingly, LDA and RFN showed on 
average the same number of false positive and negatives as 
single classifiers for individual movements, a behavior 
observed across all other classifiers in the OVO topology. 

V. CONCLUSION 

The conclusions of this work can be summarized as 

follow: 

 Regardless of the computation of accuracy employed, 

this must always be defined in order to avoid 

ambiguity. 

 High specificity and NPV are common in MPR for the 

prediction of motion intent across classifiers, 

topologies, and types of movements (individual and 

simultaneous). 

 Since global accuracy is favored by the latter and the 

unbalanced true condition, class-specific accuracy is 

preferable instead. 

 Precision (or active error rate [11]) can be considered 

as a critical parameter due to the potential detrimental 

effect of false positives in controllability. Therefore it 

must be considered along sensitivity and accuracy in 

order to provide a more complete report of the 

discrimination capabilities of a given MPR algorithm. 
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