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Sensory impairment hinders a person’s ability to interact with
their environment, and thus reduces their quality of life. In the case
of impaired somatosensory perception, visual input can only pro-
vide indirect information at a non-negligible cognitive cost. There-
fore, restoration of natural somatosensory perception via artificial
means has led to the exploration of different biological targets
(Weber et al., 2012). Stimulation of the somatosensory cortex
(Bensmaia, 2015), dorsal root ganglia (Weber et al.,, 2011), and
peripheral nerves (Pasluosta et al., 2018) can produce intuitive
and near-natural tactile and proprioceptive sensations, although
proprioception has been studied to a lesser extent than touch
(Weber et al., 2012).

Restoration of somatosensory feedback has been long sought in
prosthetic limb development (Clippinger et al., 1974), with most
published approaches using non-invasive devices delivering sen-
sory substitution (Antfolk et al., 2013). This is arguably because
implantable devices require larger budgets and face higher regula-
tory requirements. Sensory substitution forces subjects to learn
new associations between the physical causes of a sensation, and
the sensation itself. For example, vibrotactile stimulation over
the forearm to convey the grasping force applied by the prosthetic
hand. The mismatch between sensory location (forearm instead of
fingers) and modality (vibration instead of pressure) is caused by
the limitations of eliciting physiologically appropriate percepts
transcutaneously, unless a phantom map is present (i.e., incidental,
uncontrolled, and disorganized sensory reinnervation causing that
stimulation on the stump, results in distally referred sensations
perceived as arising from the missing limb). Unfortunately, phan-
tom maps are uncommon and often incomplete (Griisser et al.,
2001). In contrast, most amputees retain afferent neural pathways
to convey intuitive and natural sensations, which remain viable for
decades (Stein et al., 1980). The caveat lays on the need of perma-
nently implanting electrodes, along with a human-prosthesis
interface that allows for long-term stable communication between
the said electrodes and the prosthesis (Ortiz-Catalan, 2017). There-
fore, a trade-off exists between the intuitive and natural quality of
perceived sensations, and the complexity and costs of the devices
required to elicit them.

In this issue of Clinical Neurophysiology, Pasluosta and col-
leagues review current paradigms of electrical nerve stimulation,
focusing particularly on the restoration of somatosensory percep-
tion after amputation (Pasluosta et al., 2018). Physiologically
appropriate percepts can be elicited by directly stimulating the

https://doi.org/10.1016/j.clinph.2018.01.008

brain in patients with spinal cord injuries (Flesher et al., 2016).
In the case of amputees, however, peripheral nerves provide a nat-
urally filtered, easier to access, and safer biological channel for
which long-term stable, electrical neural interfaces are readily
available (Ortiz-Catalan et al., 2012). Electrical stimulation has
been the preferred means to elicit biological action potentials,
but inherent spatial limitations hinder selectivity. Other technolo-
gies such as infrared neural stimulation (Richter et al., 2011) and
optogenetics (Deisseroth, 2011) can provide higher selectivity,
but are not yet clinically ready. Pasluosta and colleagues present
the latest advances in electrical nerve stimulation as currently
the most clinically viable solution for close-loop control of pros-
thetic limbs. They summarize the relevant human physiology
including sensory encoding, and provide a thorough review of elec-
trical stimulation parameters (pulse shape, duration, amplitude,
and frequency), along with their associated outcomes derived from
clinical experimentation conducted to date.

Artificially induced natural sensations are the ultimate aim of
somatosensory restoration in bionic limbs. Electrical stimulation
of the central or peripheral nervous systems have been shown to
elicit sensations that are physiologically appropriate with regards
to modality and origin, and thus natural in this respect. However,
these sensations are experienced as qualitatively artificial with
“electric/tingling” traits, as repeatedly observed since the first
experiments on microstimulation of single afferent fibers (Vallbo
et al.,, 1984). Recently, patterned stimulation was proposed as a
solution to transform artificial into “as natural as can be” sensa-
tions (Tan et al., 2014). However, replication of these results has
not yet been achieved (Ortiz-Catalan et al., in preparation).
Whereas it is currently possible to elicit long-term stable, intuitive
percepts (Graczyk et al., 2016; Ortiz-Catalan et al., 2014; Tan et al.,
2014), the challenge of providing a completely natural sensory
experience persists. In addition, the ultimate natural somatosen-
sory feedback would require tactile and proprioceptive integration
(Rincon-Gonzalez et al., 2011), for which current neural interfaces
lack target selectivity.

Sensory feedback has been found critical to learning how to
modulate neural activity when faced with new tasks (Koralek
et al., 2012). In prosthetic control, tactile feedback has been shown
to improve performance under uncertainty (Saunders and
Vijayakumar, 2011), but irrelevant under repetitive tasks
(Schiefer et al., 2016). Nevertheless, the need for sensory feedback
is intuitive to scientists, engineers, and medical professionals, who
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remain fascinated by the challenge and potential benefits to
patients. Yet on the practical side, hard evidence is still required
to demonstrate substantial functional benefits, as functional
restoration is the key driver for reimbursement of assistive tech-
nologies. Obtaining this evidence will ensure that patients can ulti-
mately benefit from the research and developing efforts conducted
in the field of neuroprosthetics.
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