
  

 

Abstract— We present an integrated, open-source platform 
for the control of assistive vehicles. The system is vehicle-
agnostic and can be controlled using a myoelectric interface to 
translate muscle contractions into vehicular commands. A 
modular shared-control system was used to enhance safety and 
ease of use, and three collision avoidance systems were included 
and verified in both an included test platform and on a 
quadcopter operating in a simulated environment. Seven 
subjects performed the experiments and rated the user 
experience of the system under each of the provided collision 
avoidance systems with positive results. Qualitative tests with 
the quadcopter validated the proposed system and shared-
control techniques. This open-source platform for shared 
control between humans and machines integrates decoding of 
motor volition with control engineering to expedite further 
investigation into the operation of mobile robots.  

I. INTRODUCTION 

Missing limbs, partial loss of muscular control, and weak 
musculature all inhibit personal mobility and can 
significantly impact a person's overall quality of life [1]. 
Traditional powered wheelchairs aim to reduce some of the 
negative effects of these conditions but still require both 
dexterity and concentration to safely operate [2], [3]. The 
use of gesture recognition offers an alternative avenue for 
vehicular control [4], but still requires volitional limb control 
to use. Significant research has been done to utilize signals 
from the brain and any remaining functional musculature to 
replace or augment lost or impaired mobility and extremity 
function [5]–[10]. Electroencephalography (EEG) and 
electromyography (EMG) signals offer opportunities for 
control of assistive devices, even in cases of tetraplegia, 
where the patients are unable to move any of their limbs. 
Unfortunately, such human machine interfaces are prevented 
from achieving the same information transfer rates as a 
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conventional joystick due to environmental noise and the 
stochastic nature of the brain and myoelectric signals. These 
obstacles can make it difficult to safely and efficiently 
operate a personal vehicle using bioelectric signals alone [6], 
[7]. EMG signals have been a focus of study due to their 
relatively high throughput and direct correlation with motor 
intention. This comes with the caveats of muscle fatigue 
from constant contractions and poor controllability from the 
sequential nature of most myoelectric pattern recognition 
(MPR) algorithms [5], [9]. However, some experimental 
MPR strategies allow more natural control, such as 
simultaneous control of different degrees of freedom. In 
addition, the speed or force in the end effector can be 
adjusted to the level of muscular contraction, referred to as 
proportional control [10], [11]. 

Shared control systems, where a computer system is used 
to augment user control based on the environment, can be 
used to lower the mental load and physical fatigue associated 
with controlling a personal vehicle with EMG signals while 
increasing the safety and controllability of the device. One 
simple strategy is to allow the user to set the velocity and 
direction of the vehicle and have the system stop if it gets 
too close to an obstacle. This approach is often insufficient 
to smoothly navigate complex environments, highlighting 
the need for more advanced systems [12]. In addition, lack 
of control or feedback over the level of computer assistance 
provided can lead to frustration from users [2]. A balance 
must be struck between the agency an operator exerts on the 
device, and the intelligent interpretation of the received 
commands with respect to the local environment.  

Dynamic control systems have been shown to 
significantly improve the safety and controllability of 
assistive vehicles controlled by joystick or computer 
interface [13], [14]. Rather than having to split a task into 
discrete operations, namely repeatedly stopping and turning, 
the system allows the user to specify the overall direction 
and proceed from there. Such systems also reduce the 
cognitive workload of navigation by reducing the number of 
commands required to control a vehicle. Previous work on 
using dynamic role adaptation to determine the level of 
control the user exerts on the system showed promising 
results [15], [16], but much of the research on the topic relies 
on custom made hardware and software or are Wizard-of-Oz 
type setups [2], [4]–[6], [17]. This necessitates the 
development of a generic and extensible interface for 
personal vehicular control in research for faster production 
and better comparative analyses.  
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In this work, we provide an open-source, integrated 
platform for the investigation of safe and generic vehicular 
control based on myoelectric pattern recognition. The 
framework is largely based on existing open-source projects 
which have the benefits of community support and the use of 
established development frameworks. We implemented 
three control algorithms for reference and used the 
framework to implement a user experience study comparing 
the assistance provided by each using both an included 
testing platform and a quadcopter as a test vehicle in 
Gazebo, a robotics simulation environment. 

II. MATERIALS AND METHODS 

A. Vehicle, Sensors, and Protocol Selection 

An Erle Robotics ErleBrain3 autopilot module was used 
in this research as hardware-in-the-loop simulator, 
performing physics calculations, communication, and motor 
control for the robotics simulator. The on-board firmware 
used was a branch of the ArduPilot autopilot firmware 
modified to communicate with a virtual LiDAR unit for 
collision avoidance. ArduPilot is an open-source, generic 
autopilot system capable of controlling various vehicle 
types, including ground, air, and submersible vehicles, with 
little to no modification. Vehicle agnostic control was 
deemed important for this work to allow for transferability 
between different types of assistive devices. The modified 
source code is available on GitHub along with all collision 
avoidance and experimental code used in this work [18]. 

Webcams and ultrasonic range sensors have previously 
been used as detection modalities [13]–[15], but LiDAR 
systems have recently become inexpensive enough to 
include in lower cost, consumer devices. The LiDAR sensor 
used provided information about obstacles in a 360 degree 
plane relative to the axis of the vehicle. The range scans 
were described in polar coordinates with a range of 40 
meters, a distance resolution of 1 cm and an angular 
resolution of roughly 3.6 degrees. These specifications were 
based on the commercially-available Scanse Sweep LiDAR 
system. 

The Micro Air Vehicle Link (MAVLink) protocol 
through the DroneKit SDK was used for communication 
between the vehicle and the base station. MAVLink and 
DroneKit were chosen, as they are both actively maintained, 
open-source protocols for communicating with unmanned 
vehicles and support communication and control of any 
vehicle type supported by the ArduPilot firmware. 

Sensor data received from the LiDAR unit was 
continuously sent to the base station for processing. The 
MAVLink protocol supports proximity sensor data in eight 
45 degree sectors, with the first sector centered along the 
vehicle heading direction. Therefore, data sent over the link 
consisted of the minimum distance along each sector up to a 
maximum distance of 40 meters. This treated any detected 
obstacle as taking up an entire 45 degree arc, Fig. 1.  

B. User Control 

The user interface was designed to allow the user to 
influence the relative velocity and heading of the vehicle, 
𝜙𝑢𝑠𝑒𝑟  and 𝑣𝑢𝑠𝑒𝑟 , respectively, through patterns of muscular 
contractions. EMG signals were obtained using the 

BioPatRec research platform coupled with the ADS_BP 
signal acquisition unit [19], [20]. BioPatRec was also used to 
provide EMG signal processing, pattern recognition, and 
commands corresponding to the user’s motor intention. 
Muscle contractions were each linked to target behaviors in 
the vehicle, with closing and opening the hand controlling 
velocity and wrist flexion and extension turning the vehicle. 
Additionally, in the quadcopter simulations, wrist pronation 
and supination controlled the altitude of the vehicle. In this 
configuration, user controls were additive, meaning no 
contraction would have the vehicle travel in a straight line at 
its current velocity, closing the hand would increase the 
velocity, and flexing or extending the wrist would turn the 
vehicle. 

C. Shared Control Approach 

Three collision avoidance methods were implemented to 
augment user control with sensor data: halt-on-proximity 
(HOP), gain attenuation (GA), and dynamic control (DC). 
These methods were based on continuous impulsive force, 
linear function, and potential field proximity constraints, 
respectively, commonly used in robotic control systems [21]. 
Parameters for each avoidance method were manually tuned 
in the provided simulator. Additionally, a hard limit on the 
vehicle's target velocity, υmax, was set to ensure stable 
operation. User velocity and angle inputs, υuser and 𝜙𝑢𝑠𝑒𝑟 , 
were summed with the outputs of the selected avoidance 
method, υca and 𝜙𝑐𝑎, to produce the total output sent to the 
vehicle. An intermediate velocity value, υint, is used to allow 
the collision avoidance system to operate on both the current 
vehicle state, υ and 𝜙, and the user input (1-3). 

 

 The angle of each sensor, 𝜃𝑘, relative to the vehicle 
heading, is defined as the midpoint of each 45 degree sector. 
For brevity, we define a set of sectors, 𝐾, that consist of only 
forward-facing sensors, relative to the direction of 
movement, 𝜙, defined as follows: 

 

The HOP method set a hard threshold such that the 
resulting vehicle velocity, υnew, dropped to 0 if the distance 
between the vehicle and an obstacle in the heading direction 
was smaller than a threshold 𝑑𝑡ℎ𝑟. Using this method, users 

 

Figure 1: Diagram showing the sector widths (), relative angle of 

the heading (), and sector angles (k) with respect to the front of the 

vehicle (white arrow). 
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could move in one degree of freedom at a time, selecting to 
turn, move forward, or move backwards. HOP was also used 
in the GA and DC algorithms with a lower threshold to 
guarantee the vehicle would not crash into an obstacle, and 
is defined as follows: 

 

where υca,HOP is the HOP velocity contribution and dk is the 
distance measured in sector k. 

GA provided a soft threshold on the vehicle velocity, to 
maintain a constant minimum time-to-contact, tc, with any 
observed obstacles, and is defined as follows: 

 

DC operated on both the angular and forward velocities 
of the vehicle. It constructed virtual repellers that smoothly 
guided the vehicle around detected obstacles. Forward 
velocity was limited to allow the vehicle sufficient time to 
rotate depending on the proximity of the obstacles. This 
included using υca,GA, defined above, as a soft limit on the 
velocity. If the vehicle velocity increased above the limit, the 
system would produce repellors of exponentially greater 
strength to slow the vehicle. The forward velocity and 
relative angle of the heading were adjusted based on (9) and 
(10) respectively as follows: 

 

where Δ𝜃𝑘 represents the angular width of sector k and 

cv,obs, cv, 1, and 2 are selectable parameters that describe 
the linear strength, linear range, angular strength and angular 
range of the repeller dynamics, respectively. A rigorous 
analysis of the concept can be found in Bicho and Schöner’s 
work on behavior-based robotics [22].  

Bicho and Schöner’s work was originally designed for 
fully autonomous systems and required both repellers and an 
attractor for path planning. The implementation in the 
current work ignores the target attractor in lieu of the user 
input, and only uses repellers to attenuate the velocity of the 
vehicle enough to accommodate how quickly the vehicle can 
turn to avoid an obstacle. The angular velocity resulting 
from the above dynamics is an exponential function of 
distance. This allows for smooth changes that are easily 
overridden by the user over long distances or slow speeds 
but requires conscious effort to override if the system detects 
an imminent collision.  

D. Testing Procedure 

Seven able-bodied subjects between the ages of 23 and 
31 (µ=27, SD=3.3) participated in this experiment. Surface 
EMG signals were recorded using four sets of Ag/AgCl 
disposable electrodes placed with approximately equal 
spacing along the proximal third of the subject’s desired 
forearm. Four target movements were chosen to provide a 
set of commands for the vehicle control, with hand close and 
hand open controlling the velocity and wrist flexion and 
wrist extension controlling the heading direction of the 
vehicle. The target movements were recorded in BioPatRec 
using the built-in recording session protocol. The EMG 
signals were sampled at 1000 Hz and split into 200 ms 
windows with 150 ms overlaps for feature extraction. 
Features were calculated using mean absolute value, window 
length, signed slope change, and zero crossings from the 
Hudgins’ time-domain feature set [23], [24]. These data 
were then used to train a linear discriminate analysis 
classifier in a One-vs-All scheme.  

A goal-directed vehicle simulator was developed in 
Python, and adapted to execute the control commands 
outputted from the BioPatRec pattern recognition module. 
The simulator supplied collision sensors measurements 
similarly to what provided by MAVLink (Fig. 2). After 
training the pattern recognition system, the subjects were 
asked to control the vehicle to familiarize themselves with  
the control scheme. The recording, training and warm-up 
steps were repeated in cases of poor controllability before 
the start of the experiment due to poorly placed electrodes or 
mistakes made during classifier training. The experiment 
required the subjects to direct the vehicle to target positions 
plotted on screen within three minutes time. This task was 
repeated using each of the collision avoidance algorithms 
with a random execution order.  

Testing metrics included: the total time to complete the 
task, the time spent in collision with an obstacle, the idle 
time, and an ordinal rating from 0 (unusable) to 10 (helpful 
and intuitive). The idle time was considered any time the 
subject was not sending any command. Subjects were asked 
to focus on the performance of the shared control system 
rather than the pattern recognition interface when rating each 
system to determine if there was a preference, as the 
feasibility of myoelectric signals in vehicular control has 
already been established [5], [6], [17]. Results for each 

 

Figure 2: Goal directed vehicle simulator. Blue areas represent 

obstacles, the white circle represents the vehicle with the heading 

along the green line, the orange box indicates the target, and the red 

and green lines indicate the scan lines of the LiDAR unit. 
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algorithm were compared using one-way ANOVA analysis, 
corrected with the Tukey-Kramer criterion. 

Moreover, the collision avoidance algorithms were 
preliminarily tested on a quadcopter in a simulated 
environment. The quadcopter was tested with conservative 
values for each of the collision avoidance parameters, due to 
the complex flight dynamics of the system. The user control 
remained the same as in the simulated environment, with 
BioPatRec decoding upper arm signals and translating them 
to vehicle commands. The testing area was an outdoor 
environment with several large obstacles in between the 
starting and target locations. Each avoidance method was 
tested to ensure adequate functionality of the system. 

III. RESULTS 

A. Comparison of Operation with Different Controllers in 
Simulation 

No statistically significant difference was found in any 
tested metrics, Fig. 3. However, there was a trend for more 
intelligent systems, namely GA and DC, to have the lower 
completion times. All test subjects, except one while testing 
the HOP method, were able to complete the tasks within the 
allotted time. Collisions were only reported on the DC 
avoidance algorithm, indicating that more effort is required 
to tune the parameters for better safety. Idle time was not 
significantly affected by the control algorithm, indicating 
that all tested algorithms impose a roughly equal mental and 
physical load on the subjects. All algorithms had positive 
ratings, suggesting that the user experience of each system 
was intuitive. Tests with more subjects may show more 
discrepancies and help the researchers optimize the safety 
and control parameters in the future. 

B. Testing the Controller on a Quadcopter 

The quadcopter avoided all obstacles in the testing 
environment under each avoidance algorithm. Qualitative 
analysis of the flight pattern suggests that the HOP method 

poses the highest risk of a collision. This method implicitly 
requires a low distance threshold to allow sufficient 
controllability in the presence of obstacles, which could be 
too small for the vehicle to stop when approaching an 
obstacle at maximum velocity. The DC method exhibited the 
smoothest trajectory when traversing environments, as 
shown in Fig. 4. 

IV. DISCUSSION & CONCLUSIONS 

The MAVLink protocol only supports eight directions in 
the flight plane for proximity sensing. Smoother control for 
collision avoidance can be achieved by defining custom 
commands to enhance the protocol. Dynamically modifying 
the strength of the avoidance system parameters based on the 
integrity of the user control is also an avenue for further 
investigation, as it has shown initial promise in previous 
research [12], [15], [16]. Sanders' work also included the use 
of lateral control for collision avoidance, which the proposed 
system is capable of implementing but was left out of the 
current investigation [15].  

In this work, all parameters for the shared control 
systems were tuned by hand. Future work will include a 
means of incorporating vehicle dynamics properties to 
directly formulate parameters that form a safe and 
controllable system. This can be augmented in real-time with 
additional sensors that record environmental and user data to 
ensure a safe and effective system in changing conditions.  

Subjects reported that classification errors confusing any 
movement with an open-hand movement often stopped the 
vehicle during testing and caused frustration. This suggests 
the use of a velocity ramp, majority voting scheme, or some 
other method to reduce the effect of single classification 
errors or erroneous movements [25], [26]. Investigation into 
simultaneous and proportional control may also show a 
positive impact on vehicle controllability. Subjects also cited 
the lack of visual feedback for both classified movements 
and the amount of control the avoidance system exhibited as 
causes of dissatisfaction. An on-screen display of the user 
controls and the avoidance system activation should remedy 

 

Figure 3: Box plots showing the distributions of (a) user ratings, (b) 

completion time, (c) idle time, and (d) time spent in collision with an 
object for each avoidance algorithm. A circle with a dot indicates the 

median value, the thick bars indicate the interquartile range, and empty 

circles indicate outlier values. 

 

Figure 4: Quadcopter in Gazebo simulator under the influence of the 

DC collision avoidance method. Orange dots indicate the path 
followed, starting near the bottom left, when directed to move forward. 

Note that the quadcopter slowed and turned to avoid the walls without 

user intervention. 
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these issues and will be implemented in future work.  

 There is enough on-board processing power in the 
autopilot module to create a system that does not require a 
base station to operate, allowing the signal acquisition 
system to be connected directly over a Bluetooth or Wi-Fi 
link. This would require implementing the pattern 
recognition routines in firmware, but it would reduce the 
cost and increase the portability of the system. This system 
also has the potential to control computer interfaces if 
combined with graphical user interface automation and 
image recognition technologies.  

Here we presented an open-source, integrated platform 
for the investigation of safe and intuitive vehicular control 
for people with reduced mobility based on myoelectric 
pattern recognition. The implemented collision avoidance 
algorithms all performed satisfactorily through validation in 
a user study. Their functionality was also confirmed by tests 
in a virtual environment. All relevant code and 
documentation for the simulator, collision avoidance system, 
and communication layer between BioPatRec and DroneKit 
were uploaded to a GitHub repository available for public 
use [18]. 
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