Online Classification of Transient EMG Patterns for the Control of the Wrist and Hand in a Transradial Prosthesis
Decoding human motor intentions by processing electrophysiological signals is a crucial, yet unsolved, challenge for the development of effective upper limb prostheses. Pattern recognition of continuous myoelectric (EMG) signals represents the state-of-art for multi-DoF prosthesis control. However, this approach relies on the unreliable assumption that repeatable muscular contractions produce repeatable patterns of steady-state EMGs. Here, we propose an approach for decoding wrist and hand movements by processing the signals associated with the onset of contraction (transient EMG). Specifically, we extend the concept of a transient EMG controller for the control of both wrist and hand, and tested it online. We assessed it with one transradial amputee and 15 non-amputees via the Target Achievement Control test. Non-amputees successfully completed 95% of the trials with a median completion time of 17 seconds, showing a significant learning trend (p < 0.001). The transradial amputee completed about the 80% of the trials with a median completion time of 26 seconds. Although the performance proved comparablewith earlier studies, the long completion times suggest that the current controller is not yet clinically viable. However, taken collectively, our outcomes reinforce earlier hypothesis that the transientEMGcould represent a viable alternative to steady-state pattern recognition approaches.